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Abstract

This paper shows how to construct anomaly free world sheet actions in string theory with
D-branes. Our method is to use Deligne cohomology and bundle gerbe theory to define geometric
objects which are naturally associated toD-branes and connections on them. The holonomy of
these connections can be used to cancel global anomalies in the world sheet action.
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1. Introduction

It has been noted by a number of authors particularly Freed–Witten and Kapustin[6,12]
that theB-field, inD-brane theory, defines a Deligne cohomology class and this interpreta-
tion has been used to show how anomaly cancellation occurs in the world sheet action.

The mathematical formalism underlying these observations starts with a space-time man-
ifold M with a submanifoldQ ⊂ M, theD-brane, and a good open coverU = {Uα}a∈I of
M (recall that this means that every finite intersection of elements inU is contractible). The
B-field is a collection of smooth de Rham two-forms{Bα}a∈I with Bα defined onUα and
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satisfying dBα = dBβ onUα ∩ Uβ for all α, β ∈ I. Thus{dBα}α∈I defines a three-formH
onM. For full treatments, see[5,18,23,24].

TheB-field has various mathematical interpretations which depend on associated topo-
logical and geometric structures. These interpretations include: a Cech representative for
Deligne cohomology, a differential character, a connection and curving on a gerbe, a con-
nection and curving on a bundle gerbe, a connection on aBS1 bundle[7] or some differential
geometric structure on aPU(H) bundle. It is not clear to us if physics can distinguish be-
tween these different mathematical realisations of aB-field. In this paper we focus on the
differential character or Deligne class which is the minimal geometric datum necessary to
build world sheet actions.

In the simplest case theB-field restricts on theD-braneQ to the Stiefel–Whitney class
of the normal bundle toQ. Then world sheet anomaly cancellation, or equivalently, the
construction of world sheet actions was investigated in[6]. In this paper we show that for
this case the differential character viewpoint alone suffices. This refines the results of[6] in
that it eliminates any dependence of the action on choices such as open covers and makes
explicit some other necessary but subtle choices(2.2) which affect the definition of the
action.

In order to build a world sheet action in the more difficult situation where there is a
general torsionB-field onQ (that isH = 0 onQ) we need to introduce bundle gerbes and
bundle gerbe modules. These provide an alternative to the Azumaya algebra modules of
[12]. Our approach provides a refinement of the conclusions of[12] in making explicit the
extent of dependence on choices made in the construction.

Finally, bundle gerbe modules with infinite dimensional fibre are needed for world sheet
actions in the presence of a non-torsionB-field (i.e.H is non-zero onQ, see[1,11]). This
case has not been successfully treated previously. We propose here a way to produce an
anomaly free world sheet action (this is the main result in the paper).

The paper is organised as follows.Section 2contains an overview of our constructions
without proofs. Proofs of the assertions inSection 2are presented in the remaining sections.

We review some results on Deligne cohomology, its holonomy and the differential char-
acter inSection 3. Included here is a discussion of the notion of transgressing a Deligne
two class on a manifold to a Deligne one class on the loop space of the manifold although
our account emphasises the transgression of the differential character. This is sufficient to
handle the situation considered in[6].

For the more difficult case of anomaly cancellation in the presence of general torsion
B-fields we need more mathematical structure. This is because the world sheet action is
a priori a section of a non-trivial line bundle. We use bundle gerbes and bundle gerbe
modules to introduce new line bundles which can be tensored with the original line bundle
and trivialise it.

Section 4.1reviews relevant aspects of our earlier paper[2] where we used bundle gerbes
to give a geometric approach to twistedK-theory. Here we explain the geometry of bundle
gerbes and their relation to Deligne cohomology to connect up with the discussion of
Section 3. Understanding how the action depends on choices made in its definition requires
us to study gauge transformations of a bundle gerbe. These generalise the familiar idea of a
gauge transformation on a line bundle. Then inSection 4.11the holonomy of a connection
on a bundle gerbe module is introduced motivated by the analogous construction in[12] for
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Azumaya algebra modules. For torsionB-fields, as in[12], the trace of this bundle gerbe
holonomy is a section of a line bundle over the loop space ofQ and we tensor this on to our
original world sheet action in order to convert it from a section of a non-trivial line bundle
to a function.

Our main observation is that a modification of this construction may be used (Section 4.11)
to handle the case of non-torsionB-field.

Finally, in Section 5, we round out our account by explaining the relationship with the
approach in[12]. The point is that in the case of torsionB-field there is a groupoidC∗-algebra
with spectrumM which acts on bundle gerbe modules overM. This groupoidC∗-algebra
is continuous trace and hence has a Dixmier–Douady class. It is then Morita equivalent to
any Azumaya algebra with spectrumM having the same Dixmier–Douady class. Azumaya
algebras and their modules are used in [12] to construct twistedK-theory. It follows then
that theK-theory of the groupoid algebra and the Azumaya algebra are the same whenever
their Dixmier–Douady classes are equal and both give the twistedK-theory ofM. However
we do not take theC∗-algebra approach further because we do not know how to make it
work in the non-torsion case.

2. Action building

In this section we list some basic facts about Deligne cohomology and show how they
can be used to generate anomaly free world sheet actions. In the subsequent sections we
give the mathematical background necessary to establish these facts.

Let M be a manifold with a submanifoldQ. Let Σ be a Riemann surface with a single
boundary component which is identified with the circleS1. Denote byΣ(M) the space of all
maps ofΣ intoM and byL(M) the space of all maps of the circleS1 intoM. By restricting
a map ofΣ intoM to the boundary circle we obtain a map of the circle intoM. This defines
a map we call∂ : Σ(M) → L(M). We will be particularly interested in the subset of maps
of Σ into M which map the boundary circle into the submanifoldQ. We denote these by
ΣQ(M). There is a commuting diagram

Σ(M) −→∂ L(M)

∪ ∪
ΣQ(M) −→∂ L(Q)

(2.1)

World sheet actions are functions onΣQ(M). The world sheet actions that we are interested
in will arise from sections of line bundlesL → ΣQ(M) constructed from geometric objects
onQ andM. The primary geometric object we are interested in is the Deligne class which
is a geometric interpretation of theB-field.

Let us review some basic facts about Deligne cohomology. On a manifoldX there is the
groupHp(X,Dp) of Delignep classes. For now we need only a few results about this.

2.1. Properties of Deligne classes

First there is a homomorphism (seeSection 3.2)
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c : Hp(X,Dp) → Hp+1(X,Z).

If ξ is a Delignep class we callc(ξ) its (characteristic) class.
There is also a homomorphism (Section 3.2)

ι : Ωp(X) → Hp(X,Dp),

which sends ap form ρ to a Deligne classι(ρ) and we havec(ι(ρ)) = 0 for anyp form
ρ. The kernel ofι is Ω

p
c (X) the space of all closedp-forms whose integral over any closed

submanifold is 2πi times an integer. This discussion is summarised by the exact sequence
of groups(3.8)

0 → Ωp
c (X) → Ωp(X)

ι−→Hp(X,Dp)
c−→Hp+1(X,Z) → 0.

There is also a map

Hp(X,Dp) → Ωp+1(X),

which associates to a Deligne classξ its curvatureFξ which is a closed form. The de Rham
class ofFξ is the image of 2πic(ξ) in real cohomology.

If γ : Σ → X is a map of ap-dimensional manifoldΣ into X andξ ∈ Hp(X,Dp) is a
Deligne class there is aholonomyhol(ξ, γ) ∈ C

×.
It is known thatH2(X,D2) is the group of all isomorphism classes of line bundles onX

with connection. In this case the connection determines a curvature and a holonomy which
are the curvature and holonomy of the corresponding Deligne class.

2.2. Transgression

Let ev :S1 × L(X) → X be the evaluation map and recall that there is a transgression
map

τ : Ωp+1(X) → Ωp(L(X)),

defined as follows. IfF ∈ Ωp+1(X) thenτ(F) is the result of pulling backF with ev to
S1 × L(X) and then integrating over the circle. There is an analogous map

τ : Hp+1(X,Z) → Hp(L(X),Z).

2.3. Deligne class of a torsion class

Next we need a result about torsion classes (Section 3.5). Let Zd ⊂ U(1) be the group
of dth roots of unity. Then to any classµ ∈ Hp(X,Zd) there is a Deligne classα(µ) ∈
Hp(X,Dp). The class ofα(µ) is the image ofµ under the Bockstein mapHp(X,Zd) →
Hp+1(X,Z) induced by the short exact sequence

Z
×d−→ dZ

exp(2πi)−−−→ Zd.
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2.4. Line bundle on loop space

For every Deligne classξ in H2(X,D2) there is a line bundleLξ → L(X) over the
loop space ofX (Section 3.6). This correspondence is essentially a homomorphism, that is
Lξ+η = Lξ ⊗Lη,L−ξ = L∗

ξ andL0 = U(1)×L(X). It is important to note here that these
really are equalities in the sense that there are canonical isomorphisms in each case. The
Chern class ofLξ is the transgression of the class ofξ.

There is also a natural connection onLξ → L(X) whose curvature is the transgression
of Fξ and whose holonomy is determined as follows. Ifγ : S1 × L(X) then the holonomy
aroundγ is the holonomy ofξ around ev◦ id × γ, where id× γ : S1 × S1 → S1 × L(X)

is the map(id × γ)(θ, φ) = (θ, γ(φ)).

2.5. Sections of the line bundle on loop space

We are interested in sections of the lineLξ → L(X) and its pullback toΣ(X).
The first of these arises because there is a canonical non-vanishing section (trivialisation)

φξ : Σ(X) → ∂−1(Lξ)

defined below inEq. (3.13).
The second case is whenc(ξ) = 0. Then the transgression ofc(ξ) is zero and hence

c(Lξ) = 0. It follows thatLξ is trivial or admits a global non-vanishing section. But now
there is not a canonical section. However if we choose aρ with ι(ρ) = ξ then we can
construct a section

χρ : L(X) → Lξ.

Notice that, from the exact sequence of groups(3.8)mentioned above if we changeρ to τ

with ι(τ) = ξ thenτ − ρ is a closed two-form whose integral over any two surface is an
integral multiple of 2πi. The two-formτ also defines a sectionχτ of Lξ so we must have
thatχρ = wχτ for some functionw : L(X) → U(1). The functionw is defined as follows.
If σ is a map of a diskD into X with boundary a loopγ the function

w(γ) = exp

(∫
D

σ∗(τ − ρ)

)

is well-defined and independent of the choice ofσ. This construction is, of course, just the
definition of the Wess–Zumino–Witten action ofτ − ρ. We will see inSections 4.8 and 4.9
how to understand this fact in terms of gauge transformations of bundle gerbes.

With these observations we can construct world sheet actions. We start with the following
result of Freed and Witten[6]. The theory of elliptic operators can be used to construct a
line bundleJQ → L(Q) with a section

Pfaff : ΣQ(M) → ∂−1(JQ).

Let w2 ∈ H2(Q,Z2) be the second Steifel–Whitney class of the normal bundle ofQ. This
is a torsion class soα(w2) is a Deligne class inH3(Q,D3).

The line bundleJQ has Chern class the transgression ofc(α(w2)) and a natural flat
connection whose holonomy alongγ : S1 → Q is given by(id × γ)∗(w2). It follows from
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the discussion above thatLα(w2) with its natural connection is isomorphic toJQ and has
the same holonomy. Hence we can regard Pfaff as a

Pfaff : ΣQ(M) → ∂−1(Lα(w2)). (2.2)

up to a choice of a constant depending on theD-braneQ.

2.6. Case 1

Assume that theB-field or equivalently the Deligne two classξ it defines (seeExample 3.3)
on all ofX is such that

c(ξ|Q) = c(α(w2)). (2.3)

It follows thatLξ|Q → L(Q) andLα(w2) → L(Q) are isomorphic overL(Q). By choosing
someρ ∈ Ω2(Q) with ι(ρ) = ξ|Q − α(w2) we obtain a non-vanishing sectionχρ of
Lξ ⊗ L∗

α(w2)
. Finally notice that∂−1(L−ξ) → Σ(X) has a non-vanishing sectionφ−ξ over

Σ(X) and this restricts to a non-vanishing sectionφ−ξ overΣQ(X). We can now put all the
pieces together. The tensor product

W(ρ, ξ) = Pfaff ⊗ ∂−1(χρ) ⊗ φ−ξ (2.4)

(where∂−1(χρ) denotes the pullback of the sectionχρ) is a section of∂−1(Lα(w2) ⊗Lξ|Q ⊗
L∗

α(w2)
⊗ L∗

ξ|Q) and hence is a function onΣQ(M). In [6] χρ is regarded as a kind of
connection (it is theirA-field). Notice that if we changeρ to τ subject to requiring that
ι(τ) = ξ|Q − α(w2) andσ ∈ Σ(M) then we have (using∗ to denote pullback of forms):

W(ρ, ξ)(σ) = W(τ, ξ)(σ)w(τ − ρ)(∂∗σ). (2.5)

2.7. Case 2

TheB-field is torsion on restriction toQ but (2.3) does not hold, that is, the difference
betweenc(ξ|Q), which comes from theB-field, andc(α(w2)) is non-zero.

In this case, in order to cancel the anomaly we need an auxiliary geometric structure. In
[12] Azumaya algebras played this role. Here we use bundle gerbes, bundle gerbe modules
and connections on these to give ingredients that we can feed into the world sheet action to
cancel the anomaly which is essentially

c(ξ|Q) − c(α(w2)). (2.6)

We will show inSection 4.1that any bundle gerbe with connection and curving gives rise
to a Deligne two class. If this Deligne class is torsion the bundle gerbe admits so-called
bundle gerbe modules. IfA is a connection on a bundle gerbe module for a bundle gerbe
with Deligne classη over a manifoldX then we prove inSection 4.11that the trace of
the holonomy ofA defines a section tr hol(A) of Lη → L(X). This section is an extra
ingredient that may be used in forming world sheet actions.

Kapustin[12] on the other hand considers aPU(n) bundleP → Q with classζ ∈
H2(Q,Zn)and an Azumaya algebra module connectionAonP×C

n. Asζ defines a Deligne
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class it defines a line bundleLζ → L(Q). The trace of the holonomy ofA is a section of this
line bundle and hence pulls back to give a section∂−1(tr hol(A)) of ∂−1(Lζ) → Σ(X). The
product of the Pfaffian of the Dirac operator and the pullback of the trace of the holonomy
of A is now a section of∂−1(Lα(w2) ⊗Lζ) and to make this trivial Kapustin assumes thatζ

can be chosen so that

c(α(w2)) + c(ζ) = [H ]Q,

where [H ] ∈ H3(X,Z) is the three-class arising from the Bockstein map applied to the
B-field. It follows that we can trivialise the line bundleLα(w2) ⊗ Lζ ⊗ L∗

ξ → L(Q)

(recall thatLξ is the line bundle arising from the Deligne classξ or equivalently, from the
B-field).

Choosing aρ with ι(ρ) = ξ|Q − ζ − α(w2) we obtain a non-vanishing sectionχρ of
Lξ ⊗ L∗

ζ ⊗ L∗
α(w2)

We then obtain an action by generalising the construction(2.4) to this
situation.

The bundle gerbe version of this is as follows. Start with the torsion classα(w2) − ξ|Q
on Q. Define ζ to be α(w2) − ξ|Q. There is an associated lifting bundle gerbe with
Dixmier–Douady classc(ζ) = c(α(w2)) − c(ξ|Q) (this is described inSection 4.3). A
bundle gerbe module for this lifting bundle gerbe is just aPU(n) bundleP → Q for
some integern (Section 4.9). This is the connection with Kapustin’s approach and we
can proceed by analogy with[12]. Choose a bundle gerbe module connectionA on P .
We will show (Section 4.11) that the trace of the holonomy ofA is a section of
Lζ → L(Q).

Choosing a stable isomorphism ofLξ|Q andLα(w2) ⊗Lζ defines a sectionχ of L∗
α(w2)

⊗
L∗

ζ ⊗ Lξ|Q . The total world sheet action is then

Pfaff ⊗ ∂−1(tr hol(A)) ⊗ φ−ξ ⊗ ∂−1(χ). (2.7)

Note that in[12] theχ dependence of the action is suppressed.

2.8. Case 3

TheB-field is not torsion on restriction toQ.
We can proceed as in Case 2 up until we find that the bundle gerbe module for the

lifting bundle gerbe overQ has to have fibre an infinite dimensional Hilbert spaceH.
Connections on such a module take their values in the compact operators onH and so
cannot have trace class holonomy. Following Section 9 of[2] we observe that if there are
bundle gerbe connections taking values in the trace class operators onH then the difference
of the holonomy of two of these (sayA1 andA2) is trace class. So we fix a reference bundle
gerbe module connectionA1 taking values in the trace class operators onH. If A2 is any
other trace class operator valued bundle gerbe connection we will show (Section 4.11) that
tr(hol(A1)−hol(A2)) is a well-defined section ofLζ → L(Q). Then the world sheet action
is the function

Pfaff ⊗ ∂−1[tr(hol(A1) − hol(A2))] ⊗ φ−ξ ⊗ ∂−1(χ). (2.8)

In the remainder of this paper we discuss the mathematics behind all these constructions.
We begin with the standard description of Deligne cohomology in terms of double com-
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plexes (hyper-cohomology). We then pass to the description of Deligne cohomology in
terms of differential characters. This has a number of advantages over the double com-
plex point of view. In particular it is a global description not requiring an open cover to
be chosen and moreover it is a precise description in the sense that the differential char-
acter is exactly the Deligne class rather than a representative of it in some cohomology
theory.

3. Deligne cohomology

3.1. Local description

In this subsection we review the definition of Deligne cohomology before considering
the anomaly cancellation argument. We letX be a general manifold for the purposes of
this discussion noting that in most cases we will specialise toX = Q. Recall that for any
positive integerq we have the exact sequence of sheavesDq defined by

U(1)
d log−→ Ω1 → · · · → Ωq (3.1)

whereU(1) is the sheaf of smooth functions with values inU(1) andΩp is the sheaf of
p-forms. We will define Deligne cohomology in terms of the sequenceDq below and use
the notationHp(X,Dq) for these groups although we shall be interested in the special case
q = p, that isHp(X,Dp).

LetU = {Uα}a∈I be a good open cover ofX, that is every finite intersection of elements
of U is contractible. We realise the disjoint union of all the open sets as

YU = {(x, α)|x ∈ Uα} (3.2)

and letπ : YU → X be the mapπ(x, α) = x. Thep-fold fibre product ofYU with itself,
over the mapπ is

Y
[p]
U = {(x, (α1, α2, . . . , αp))|x ∈ Uα1 ∩ · · · ∩ Uαp} ⊂ X × Ip (3.3)

which is the disjoint union of all thep-fold intersectionsUα1 ∩ · · · ∩ Uαp . We define
projection mapsπi : Y [p]

U → Y
[p−1]
U for eachi = 1, . . . , p by πi(x, (α1, . . . , ap)) =

(x, (α1, . . . , ai−1, ai+1, . . . , ap)) and a mapδ : Ωr(Y
[p]
U ) → Ωr(Y

[p−1]
U ) by

δ =
p∑

i=1

(−1)iπ∗
i .

The spaceΩp(Y
[q]
U ) is the usual space ofp-form valued cocycles and the mapδ is the usual

coboundary map for Cech cohomology. Ifω ∈ Ωp(Y
[q]
U )we letωα1...αp denote the restriction

of ω to Uα1 ∩ . . . ∩ Uαp in the usual way.
To calculate the Deligne cohomology we form the double complex:
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...
...

...
...

δ ↑ δ ↑ δ ↑ δ ↑
U(1)(Y [3]

U )
d log−→ Ω1(Ω[3])

d−→ Ω2(Y
[3]
U )

d−→ · · · d−→ Ωq(Y
[3]
U )

δ ↑ δ ↑ δ ↑ δ ↑
U(1)(Y [2]

U )
d log−→ Ω1(Y

[2]
U )

d−→ Ω2(Y
[2]
U )

d−→ · · · d−→ Ωq(Y
[2]
U )

δ ↑ δ ↑ δ ↑ δ ↑
U(1)(YU)

d log−→ Ω1(YU)
d−→ Ω2(YU)

d−→ · · · d−→ Ωq(YU)

(3.4)

The real Deligne cohomology is the cohomology of the double complex ((3.4)) which is
calculated by forming the ‘diagonal’ complex

U(1)(YU)
D−→U(1)(Y [2]

U ) ⊕ Ω1(YU)
D−→U(1)(Y [3]

U ) ⊕ Ω2(Y
[2]
U ) ⊕ Ω3(YU)

D−→ · · · (3.5)

where the mapsD are defined recursively by (forg ∈ U(1)(YU))

D(g) = (δ(g), d logg) = (δ(g), g−1 dg),

D(g, ω1) = (δ(g), δ(ω1) − g−1 dg, dω1),

D(g, ω1, ω2) = (δ(g), δ(ω1) + g−1 dg, δ(ω2) − dω1, dω2).

...

Standard results in sheaf theory can be applied to show that the cohomology of the complex
(3.5)is independent of the choice of good cover. Similarly we can show that iff : X → N

is a smooth map then we have a pull-back map

f ∗ : Hp(N,Dq) → Hp(X,Dq)

on Deligne cohomology.
We are interested in the particular case whenp = q. Then a Deligne class is determined

by a collection

(g, ω1, . . . , ωq) ∈ U(1)(Y [q+1]
U ) ⊕ Ω1(Y

[q]
U ) ⊕ · · · ⊕ Ωq(YU)

satisfying D(g, ω1, . . . , ωq) = 0 or δ(g) = 1, δ(ω1) = (−1)q−1g−1 dg, δ(ω2) =
(−1)q−2 dω1, . . . , δ(ωq) = dωq−1. Note that, from its definition as the cohomology of
a complex, the Deligne class of(g, ω1, . . . , ωq) is unchanged if we replace it by

(g, ω1, . . . , ωq) + D(h,µ1, . . . , µq−1)

= (gδ(h), ω1+(−1)qh−1dh+δ(µ1), ω2+(−1)q−1dµ1+δ(µ2), . . . , ωq+dµq−1)

(3.6)

where

(h, µ1, . . . , µq−1) ∈ U(1)(Y [q]
U ) ⊕ Ω1(Y

[q−1]
U ) ⊕ · · · ⊕ Ωq−1(YU). (3.7)
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Denote by [g, ω1, . . . , ωq] the Deligne class containing(g, ω1, . . . , ωq). Associated to a
Deligne classξ = [g, ω1, . . . , ωq] is ap + 1 form dωq. It is clear fromEq. (3.7)that this
depends only onξ. Moreoverδ(dωq) = dδ(ωq) = ddωq−1 so that this is ap+1 form defined
globally onX. Denote this form byFξ and call it the (q+ 1) curvatureof the Deligne class.

Example 3.1. If p = 0 then a Deligne class is a smooth mapf : X → U(1) and the
curvature is the one-formf ∗(dθ).

Example 3.2. If p = 1 then a Deligne classξ can be represented by an isomorphism class
of line bundle with connection. The curvature of the Deligne class is the curvature of the
connection.

Example 3.3. This is the instance we are mostly concerned with in this paper. Ifp = 2
then a Deligne class can be represented by a stable isomorphism class of a bundle gerbe
with connection and curving as reviewed inSection 4.6and originally proved in[17]. As
explained in[16] and reviewed inSection 4.5a bundle gerbe with connection and curving
gives rise to a three-curvature on the manifoldX. The curvature of the Deligne class is
precisely this three-curvature.

TheB-field in string theory may be identified with the third component (ω2) of a repre-
sentative(g, ω1, ω2) of a Deligne class inH2(X,D2). The curvature of the Deligne class
is called theH-field in string theory.

3.2. Holonomy of a Deligne class

Associated to any Deligne class

ξ = [g, ω1, . . . , ωp]

is a cohomology classc(ξ) = [g] in Hp+1(X,Z). The image ofc(ξ) in real cohomology is
the class of(1/2πi)Fξ. Let us call the Deligne classξ trivial if the Chern classc(ξ) is zero.
Note this is not the same as the Deligne class being zero. Ifρ ∈ Ωp(X) then we can restrict
it to each open set or equivalently pull it back toYU and hence determine a formπ∗(ρ). This
determines a Delignep classι(ρ) = [1,0, . . . ,0, π∗(ρ)] which is clearly trivial. Hence we
have a sequence of maps

Ωp(X)
ι−→Hp(X,Dp)

c−→Hp+1(X,Z)

with c◦ι = 0. LetΩp(X)(c,0) denote the subset ofp-forms which are closed and whose class
in Hp(X,R) is the image of a class fromHp(X,2πiZ). Then there is an exact sequence

0 → Ωp(X)(c,0) → Ωp(X)
ι−→Hp(X,Dp)

c−→Hp+1(X,Z) → 0. (3.8)

Assume thatX is p-dimensional so thatHp+1(X,Z) = 0. Then every Deligne classξ is
trivial so ξ = ι(ρ) for some formρ onX and, assuming thatX is oriented, we can define

hol(ξ,X) = exp
∫
X

ρ.
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If we choose anotherρ′ with ι(ρ′) = ξ then∫
X

(ρ − ρ′) ∈ 2πiZ,

so that hol(ξ,X) is independent of the choice ofρ. Notice thatFξ = dρ so if X is the
boundary of ap + 1-dimensional manifoldY then we have

hol(ξ,X) = exp
∫
∂Y

ρ, (3.9)

= exp
∫
Y

Fξ (3.10)

whereX = ∂Y has the induced orientation.
More generally ifX is not necessarilyp-dimensional, we can consider a mapγ : Σp →

X, whereΣp is p-dimensional and compact and define

hol(ξ, γ) = hol(γ∗(ξ),Σp).

Similarly if Xp+1 is ap-dimensional oriented manifold with boundary∂Xp+1 = Σp, a
p-dimensional manifold, andγ : Xp+1 → X we have

hol(ξ, ∂γ) = exp

(∫
Xp+1

γ∗(Fξ)

)
,

where∂γ : Σp → X is the restriction ofγ to the boundary.

Example 3.4. If p = 0 then a Deligne class is a smooth mapf : X → U(1) and the
one-form associated to the class isf ∗(dθ). The holonomy of the smooth map is over a point
p and is just the evaluation off atp.

Example 3.5. If p = 1 then a Deligne class can be represented by an isomorphism class
of line bundle with connection. The holonomy is the classical holonomy of a connection.

Example 3.6. If p = 2 then a Deligne class can be represented by a stable isomorphism
class of a bundle gerbe with connection and curving. The holonomy is the holonomy of a
connection and curving defined in[16] and reviewed inSection 4.6.

Using (3.9) we can define the gluing property of holonomy. LetΣi for i = 1,2,3 be
manifolds of dimensionp related as follows. Assume we have open setsUi ⊂ Σi for i = 1,2
such thatΣi − Ui andUi are manifolds with (common) boundary. Moreover assume we
have an orientation reversing diffeomorphismφ : U1 → U2 of manifolds with boundary
so that∂φ : ∂(Σ1 −U1) → ∂(Σ2 −U2) is a diffeomorphism. Finally assume thatΣ3 is the
manifold constructed by using∂φ to glue togetherΣ1 − U1 andΣ2 − U2. Consider now
a pair of mapsγi : Σi → X such thatγ2|U2 ◦ φ = γ1|U1. Then there is an induced map
f1#f2 :: Σ3 → X. This map may not be smooth on the common boundary of theΣi − Ui

but we can still define its holonomy. Then we have the following proposition.
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Proposition 3.7 (Holonomy gluing property).In the situation above

hol(ξ, γ1#γ2) = hol(ξ, γ1)hol(ξ, γ2).

Proof. Using the definition of holonomy as an integral it is easy to see that

hol(ξ, γ1#γ2) = hol(ξ, γ1|(Σ1−U1))hol(ξ, γ2|(Σ1−U2))

= hol(ξ, γ1|(Σ1−U1))hol(ξ, γ1|U1)hol(ξ, γ1|U1)
−1 hol(ξ, γ2|(Σ1−U2))

= hol(ξ, γ1|(Σ1−U1))hol(ξ, γ1|U1)hol(ξ, γ2|U2)hol(ξ, γ2|(Σ1−U2))

= hol(ξ, γ1)hol(ξ, γ2).

Here we use the fact thatφ is orientation reversing to deduce that

hol(ξ, γ1|U1)
−1 = hol(ξ, γ2|U2). �

A remark may help the reader to visualise the gluing here whenp = 2. Imagine thatΣ1
andΣ2 are two balloons that are pressed together so they touch on an open diskU1 = U2.
Cut out the region where the balloons meet and we obtain the surfaceΣ3. We are suppressing
mention here of the inclusion mapsf1 andf2 of the surfaces intoX = R

3. Notice that it
would be easier to state the(3.1)as the holonomy ofU1 times the holonomy overΣ1 −U1
equals the holonomy overΣ1 but we cannot as holonomy is only defined for closed surfaces.

3.3. Local formulae

To compare with the calculations in[6] it is useful to have a local formulation of the
holonomy. We will restrict attention to a Deligne two class although a general formula is
possible. Formulae of this type have appeared previously in the work of Gawedzki[8,9],
Brylinski [3], and Kapustin[12] for Deligne classes of arbitrary degree in[10]. In these
applications the formulae were used to define the holonomy, here we have an intrinsic
definition and we will derive the local formula. The case of a Deligne class of arbitrary
degree is in[19].

Consider then a Deligne two classξ = [g, k, B] relative to an open cover{Uα} of X. We
pull this class back to a surfaceΣ without boundary via a mapσ : Σ → X and obtain the
classσ∗(ξ) = [σ∗(g), σ∗(k), σ∗(B)] relative to the open cover{σ−1(Uα)} of Σ. As Σ is
two-dimensional this class is trivial and we have

σ∗(gαβγ) = hβγh
−1
αγ hαβ,

and we can findmα such that

σ∗(kαβ) + h−1
αβ dhαβ = mβ − mα.

If follows that σ∗(B)−1
α − dmα is a globally defined two-form the exponential of whose

integral overΣ is the holonomy.
Assume now that we have a triangulation ofΣ into faces, edges and vertices which is

subordinate to the open cover{σ−1(Uα)}. That is the closure of each face is in (at least
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one) open set. For each facef we choose a particular open setσ−1(Uρ(f)) such that
f ⊂ σ−1(Uρ(f)). Similarly for each edgee and vertexv. Then we have

hol(Σ, ξ) =
∏
f

exp

(∫
f

σ∗(Bρ(f)) − dmρ(f)

)
,

where we orient each face with the orientation it inherits fromΣ. Using Stoke’s theorem
this becomes

hol(Σ, ξ) =
∏
f

exp

(∫
f

σ∗(Bρ(f))

) ∏
e⊂f

exp

(
−

∫
e

mρ(f)

)
,

where the second product is over all pairs(e, f) consisting of an edge contained in a face.
In the integral the edge is oriented by the face. For a paire ⊂ f we have

−mρ(f) = −mρ(e) + σ∗(kρ(f)ρ(e)) + h−1
ρ(f)ρ(e)dhρ(f)ρ(e).

Notice that
∑
e⊂f

∫
e

−mρ(e),

vanishes as every edge occurs in exactly two faces and with opposite orientations. We use
here the fact thatΣ is a manifold without boundary. Hence we have, again using Stoke’s
theorem, that

hol(Σ, ξ) =
∏
f

exp

(∫
f

σ∗(Bρ(f))

) ∏
e⊂f

exp

(∫
e

σ∗(kρ(f)ρ(e))
) ∏

v⊂e⊂f

hρ(f)ρ(e)(v).

For a triplev ⊂ e ⊂ f we have

hρ(f)ρ(e)(v) = σ∗(gρ(f)ρ(e)ρ(v))(v)hρ(f)ρ(v)(v)h
−1
ρ(e)ρ(v)(v),

and substituting again and observing that the remainingh terms cancel we obtain

hol(Σ, ξ) =
∏
f

exp

(∫
f

σ∗(Bρ(f))

)

×
∏
e⊂f

exp

(∫
e

σ∗(kρ(f)ρ(e))
) ∏

v⊂e⊂f

σ∗(gρ(f)ρ(e)ρ(v)(v)). (3.11)

3.4. Differential characters

We have seen that we can construct from a Deligne cohomology classξ of degreep a
holonomy operation and a curvature formFξ which satisfy holonomy gluing (Proposition
3.7) and the relation inEq. (3.9). In an appropriate sense these two data determine the Deligne
cohomology class exactly. The appropriate sense is the theory ofdifferential characters. A
differential character[3,4] is a pair(h, F), whereh is a homomorphism fromZp(X), the
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group of all smooth, closedp chains (cycles) inX, to U(1) andF is ap + 1 form. These
two are required to be related by

h(∂µ) = exp

(∫
µ

F

)

for anyp + 1 chainµ (cf. (3.9)). The homomorphism condition onh can be interpreted
as the holonomy gluing condition. The set of all such differential characters is denoted by
Ĥp(X,U(1)).

Our construction of holonomy and curvature of a Deligne class has essentially1 defined
a mapHp(X,Dp) → Ĥp(X,U(1)) and it is a result of[4] that these two spaces are, in
fact, isomorphic. In the remainder of this paper we shall work primarily with differential
characters as our representation for Deligne cohomology. Because of this isomorphism we
can reinterpret various maps we have defined for Deligne cohomology in terms of differ-
ential characters. First notice that the curvature of a differential characterξ = (h, F) is, of
course,F .

Secondly the map

ι : Ωp(X) → Ĥp(X,U(1))

is defined as follows. Lethρ : Zp(X) → U(1) be defined byhρ(σ) = exp(
∫
σ
ρ) for any

ρ ∈ Ωp(X). This is a homomorphism and we letι(ρ) = (hρ, dρ).
Thirdly there is an induced mapc : Ĥp(X,U(1)) → Hp(X,Z). We follow the discussion

in [3]. LetCp(X) be the group of all chains. Results from group theory imply that there is
a mapĥ : Cp(X) → R such thath(σ) = exp(ĥ(σ)) for anyσ ∈ Cp(X). Then

∫
µ

F − ĥ(∂µ) ∈ 2πiZ

for anyµ ∈ Cp+1(X). Let τ(µ) = (1/2πi)(
∫
µ
F − ĥ(∂µ)) and notice that∂∗(τ) = 0 so

that [τ] ∈ Hp+1(X,Z). It is straightforward to check that changing the choice ofĥ does
not change the class of [τ] and we definec(h, F) = [τ].

Our preference for differential characters is due to their mathematical simplicity and a be-
lief that they are generally the observable quantities inD-brane physics. However there are
many situations where we want to work with geometric objects which determine a Deligne
class rather than with representatives of the Deligne classes or of the differential characters
themselves. For anyp there are a number of such geometric objects, for example forp = 2,
the case of interest in this note, there are gerbes, bundle gerbes, local gerbes in the sense of
Hitchin,Z bundle two gerbes andBS1 bundles in the sense of Gajer[7]. All of these, when en-
dowed with appropriate notions of connection and curvature, determine degree two Deligne
classes and differential characters. While we have a bias towards bundle gerbes (evident later
in this article) the formalism forD-branes incorporates additional structure beyond what we

1 This is not completely true as we have defined holonomy only over cycles which arise as the images of maps
of triangulated manifolds. We will ignore this issue for the remainder of the discussion as it does not affect what
we are doing.
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have described here. It is conceivable that one of these geometric realisations will be prefer-
able when this additional structure is taken into account, however our point here is that since
we can formulate the discussion in terms of Deligne characters, and all the geometric reali-
sations lead to these, our account is independent of whatever geometric realisation is chosen.

It is not clear which physical applications can motivate a preference for one of these ge-
ometric realisations over another. We will not attempt to comment further on this question
here.

3.5. Deligne class of a torsion cohomology class

Recall that the short exact sequence of groups

Z
×d−→ Z → Zd,

induces the Bockstein mapβ : Hp(X,Zd) → Hp+1(X,Z). We will show that there is a
mapη : Hp(X,Zd) → Hp(X,Dp) such thatc ◦ η = β.

Let κ ∈ Hp(X,Zd). Choose a representativer ∈ κ. Thenr is a homomorphism from
Cp(X), the group of allp chains, intoZd . We can restrict this to obtain a homomorphism
fromZp(X) intoZd . If we choose another representativer′ ofκ then(r−r′) = ∂∗(s) for some
s ∈ Cp−1(X) so that ifσ is a closedp chain then〈r, σ〉−〈r′, σ〉 = 〈r−r′, σ〉 = 〈∂∗(s), σ〉 =
〈s, ∂(σ)〉 = 0. So we have a well-defined homomorphismhκ : Zp(X) → Zd ⊂ U(1). If
σ = ∂(τ) thenhκ(σ) = 〈r, ∂(τ)〉 = 〈∂∗(r), τ〉 = 0. Hence the pair(hκ,0), where 0 is the
zero(p+1)-form defines a Deligne cohomology class we denote byη(κ). In terms of Cech
representatives relative to an open cover we can representκ as theZd ⊂ U(1) valued cocycle
κi0,... ,ip for whichdκi0,... ,ip = 0 so thatη(κ) = (κi0,... ,ip ,0, . . . ,0) defines a Deligne class.
It is straightforward to check thatc(η(κ)) = β(κ) the image ofκ under the Bockstein map.

3.6. Line bundles on loop space

LetX be a manifold of dimensionm andS a compact manifold of dimensionp. Consider
the evaluation map

ev : S × Map(S,X) → X.

If ρ is a differentialr + 1 form onX then we can integrate its pull-back under ev to obtain
anr − p + 1 form ev∗(ρ) on Map(S,X) called thetransgressionof ρ. This transgression
operation can be extended to act on differential characters, and hence Deligne cohomology
as follows. Let(h, F) be a differential character withh : Zr(X) → U(1) andF an r + 1
form. Clearly we can transgressF to anr+p−1 form on Map(S,X). Letσ ∈ Zr−p(S) and
choose a classµ representing the generator ofHp(S,Z) = Z. Then ev∗(σ × µ) ∈ Zr(X)

and we can applyh. The result is a mapZr−p(Map(S,X)) → U(1) the transgression ofF . It
is, in fact, independent of the choice of representativeµ and together with the transgression
of F satisfies the conditions for a differential character. It is also possible to transgress a
Cech representative for a Deligne class but the result is quite complicated and we refer the
reader to[10] for details.
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We concentrate now on the case thatS = S1 and hence Map(S,X) is the loop spaceL(X)

of all smooth maps of the circle intoX. In this case the transgression of a Deligne two class
ξ is a Deligne one class onL(X) and hence it defines an isomorphism class of a line bundle
and connection. We now give a geometric construction of this line bundle and connection.
For convenience we assume thatX is simply connected and letD be a disk withD(X) the
space of maps ofD into X. Let D(X)[2] be pairs of mapsσ1 : D → X andσ2 : D → X

which agree on the boundary circle, that isσ1|∂D = σ2|∂D. Each such pair defines a map
from the two sphere (thought of as the union of two copies of the disk) intoX. Denote this
map byσ1#σ2 and orient it by the first factor.

Let (h, F) be the differential character of a Deligne two classξ. We define a line bundle
Lξ → L(X) whose fibre over a circleγ : S1 → X is equivalence classes of pairs(σ, z)
with ∂(σ) = γ andz ∈ C and equivalence relation(σ, z) � (σ′, z′) if

h(σ#σ′)z = z′.

This means that a section ofLξ is a functions : D(X) → C such that

s(σ) = h(σ#σ′)s(σ′). (3.12)

We think of this as a transformation rule just as tensor, spinor and gauge fields satisfy
transformation rules for the Spin, Lorentz and gauge groups. In the case of sections ofLξ

there is no group but the philosophy is the same. Notice that this point of view has the
advantage that sections are actually just functions, albeit on a larger space. In particular if
h = 1 then the section transforms ass(σ) = s(σ′) and hence defines a function onL(X).

The line bundleLξ → L(X) has a natural connection which we have no need in this
paper to describe. Note however that ifγ : S1 → L(X) is a loop then it defines naturally a
mapγ̃ : S1 × S1 → X and the holonomy of the connection onLξ aroundγ is h(γ̃). It can
be shown that the Deligne class of this line bundle with connection is the transgression of
the Deligne two class onX.

3.7. Sections of the line bundle on loop space

In the construction of the world sheet action we need two basic sections ofLξ → L(X)

and its pull-back toΣ(X) for a Deligne two classξ on X. We first define these and then
recall how they are used in Case 1.

Consider first

φξ : Σ(X) → ∂−1(Lξ).

A section of the line bundle∂−1(Lξ) → Σ(X)at a pointν ∈ Σ(X) is a functions : D(X)×f

Σ(X) → C satisfyings(σ, ν) = h(σ#σ′)s(σ′, ν), where elements ofD(X) ×f Σ(X) are
pairs(σ, ν) ∈ D(X) × Σ(X) such that∂(σ) = ∂(ν) and hence∂(σ) = ∂(σ′). In particular,
that the pullback∂−1(Lξ) has a canonical section defined by

φξ(σ, ν) = h(σ#ν). (3.13)

It follows from the holonomy gluing property that

φξ(σ, ν) = h(σ#ν) = h(σ#σ′)h(σ′#ν) = h(σ#σ′)φξ(σ
′, ν),
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so thatφξ(σ, ν) is indeed a section of∂−1(Lξ) → Σ(X).
When we form an action out of tensors, spinors and gauge fields we must combine them so

the resulting action transforms as a scalar. So too with world sheet actions. We must combine
various sections of various bundles so that the final action transforms ass(σ, ν) = s(σ′, ν)
and hence defines a function ofσ.

Notice that ifξ andξ′ are two Deligne classes thenhξhξ′ = hξ+ξ′ . So if we multiply a
section ofLξ and a section ofL′

ξ then it automatically transforms as a section ofLξ+ξ′ .
This means we have canonical isomorphisms

Lξ ⊗ Lξ′ → Lξ+ξ′ .

The other section used in the construction of the world sheet action is

χρ : L(X) → Lξ,

defined for aρ with ι(ρ) = ξ. To see how to define this we note that whenι(ρ) = ξ the
holonomy and curvature ofξ are given by

hι(ρ)(σ) = exp

(∫
σ

ρ

)
, (3.14)

Fι(ρ) = dρ. (3.15)

Note that exp(
∫
σ
ρ) and dρ are unchanged if we add an integral, closed form toρ, so as we

expect depend only onι(ρ) = ξ not onρ. The sectionχρ of Lι(ρ) is defined by

χρ(σ) = exp

(∫
D

σ∗(ρ)
)
,

and it is easy to check that this satisfiesχρ(σ) = hι(ρ)(σ#σ′)χρ(σ
′) as required for a section

of Lι(ρ). If we changeρ to ρ + µ, whereµ is a closed two-form whose integral over any
closed surface is 2πi times an integer then

χρ+µ(σ) = exp

(∫
D

σ∗(µ)

)
χρ(σ). (3.16)

Recall how we apply these constructions to Case 1. We have the diagram(2.1)

Σ(M) −→∂ L(M)

∪ ∪
ΣQ(M) −→∂ L(Q)

(3.17)

and we want to define a function onΣQ(M). The ingredients are a Deligne two class (B-
field) ξ on M and the (torsion) Steifel–Whitney classw2 ∈ H2(Q,Z2) which together
satisfy(2.3)

c(ξ|Q) = c(α(w2)),

and the section

Pfaff : ΣQ(M) → ∂−1(Lα(w2))

defined in(2.2).
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First we apply the above constructions to getφ−ξ : Σ(M) → ∂−1(L−ξ) and restrict this
to ΣQ(M) to get (by abuse of notation)

φ−ξ : ΣQ(M) → ∂−1(L−ξ)|ΣQ(M).

Secondly, becausec(ξ|Q−α(w2)) = 0 we can chooseρ ∈ Ω2(Q) such thatι(ρ) = c(ξ|Q) =
c(α(w2)). Hence, applying the discussion above but replacingM byQ, we obtain a section
χρ : L(Q) → Lξ ⊗ L∗

α(w2)
and hence can pull this back to obtain a section

∂−1(χρ) : ΣQ(M) → ∂−1(Lξ) ⊗ ∂−1(Lα(w2))
∗.

Combining these three sections we see that(2.5)

W(ρ, ξ) = Pfaff ⊗ ∂−1(χρ) ⊗ φ−ξ,

transforms in such a way that it is a function onΣQ(M) which is the world sheet action.

4. A geometric interpretation

In this section we are interested in Cases 2 and 3 ofSection 2that is, generalB-fields.
We will use bundle gerbes to give a geometric interpretation of the Deligne character,
transgression and the anomaly cancellation argument.

4.1. Bundle gerbes

Before defining bundle gerbes over a manifoldX recall that ifπ : Y → X is a submersion
(i.e. onto with onto differential) thenX can be covered by open setsUα such that there are
sectionssα : Uα → X of π, that isπ ◦ sα = 1. A fibration is a submersion but not
all submersions maps are fibrations. For example we can use the disjoint unionYU of a
given coverU as defined in(3.2). The sections are the mapssα : Uα → YU defined by
sα(x) = (x, α).

Recall that a bundle gerbe2 overX is a pair(L, Y), whereπ : Y → X is a submersion
andL is a hermitian line bundleP → Y [2] with a product, that is, a hermitian isomorphism

L(y1,y2) ⊗ L(y2,y3) → L(y1,y3)

for every(y1, y2) and(y2, y3) in Y [2] . We require the product to be smooth iny1, y2 andy3
but in the interests of brevity we will not state the various definitions needed to make this
requirement precise, they can be found in[16]. The product is required to be associative
whenever triple products are defined. Also in[16] it is shown that the existence of the
product and the associativity imply isomorphismsL(y,y) � C andL(y1,y2) � L∗

(y2,y1)
.

If (L, Y) is a bundle gerbe we can define a new bundle gerbe,(L∗, Y), the dual of(L, Y),
by taking the dual ofL. Also if (L, Y) and(J, Z) are two bundle gerbes we can define their

2 Strictly speaking what we are about to define should be called a hermitian bundle gerbe but the extra terminology
is overly burdensome.
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product(L⊗ J, Y ×π Z), whereY ×π Z = {(y, z) : πY(y) = πZ(z)} is the fibre product of
Y andZ over their projection maps.

A morphism from a bundle gerbe(L, Y) to a bundle gerbe(J, Z) consists of a pair of maps
(g, f), wheref : Y → Z is a map commuting with the projection toX andg : L → J is a
bundle map covering the induced mapf [2] : Y [2] → Z[2] and commuting with the bundle
gerbe products onJ andL respectively. Iff andg are isomorphisms then we call(g, f) a
bundle gerbe isomorphism.

If J is a (hermitian) line bundle overY then we can define a bundle gerbeδ(J) by
δ(J) = π−1

1 (J) ⊗ π−1
2 (J)∗, that isδ(J)(y1,y2) = Jy2 ⊗ J∗

y1
, whereπi : Y [2] → Y is the map

which omits theith element. The bundle gerbe product is induced by the natural pairing

Jy2 ⊗ J∗
y1

⊗ Jy3 ⊗ J∗
y2

→ Jy3 ⊗ J∗
y1
.

A bundle gerbe which is isomorphic to a bundle gerbe of the formδ(J) is calledtrivial . A
choice ofJ and a bundle gerbe isomorphismδ(J) � L is called atrivialisation. If J andK
are trivialisations ofP then we have natural isomorphisms

Jy1 ⊗ J∗
y2

� Ky1 ⊗ K∗
y2
,

and hence

J∗
y1

⊗ Ky1 � J∗
y2

⊗ Ky2,

so that the bundleJ ⊗K is the pull-back of a hermitian line bundle onX. Moreover ifJ is a
trivialisation andL is a bundle onX thenJ ⊗ π−1(L) is also a trivialisation. Hence the set
of all trivialisations of a given bundle gerbe is naturally acted on by the set of all hermitian
line bundles onX.

One can think of bundle gerbes as one stage in a hierarchy of objects with each type of
object having a characteristic class inHp(X,Z). For example ifp = 1 we have maps from
X toU(1), the characteristic class is the pull-back of dz. Whenp = 2 we have hermitian line
bundles onX with characteristic class the Chern class. Whenp = 3 we have bundle gerbes
and they have a characteristic class d(L) = d(L, Y) ∈ H3(X,Z), the Dixmier–Douady
class of(L, Y). The Dixmier–Douady class is the obstruction to the bundle gerbe being
trivial. In [16] the following theorem is proved.

Theorem 4.1. A bundle gerbe(L, Y) has zero Dixmier–Douady class precisely when it is
trivial .

From[16] we also have the following proposition.

Proposition 4.2. If L and J are bundle gerbes over X then

(1) d(L∗) = −d(L),
(2) d(L ⊗ J) = d(L) + d(J).

We note finally that bundle gerbes behave nicely under pull-back. If(L, Y) is a bundle
gerbe overX andf : N → X then we can pull-backY and henceL to form a bundle gerbe
(f−1(L), f−1(Y)) overN. We have d(f−1(L), f−1(Y)) = f ∗(d(L, Y)).
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4.2. Torsion bundle gerbes

The definitions of bundle gerbe, triviality and the Dixmier–Douady class can be immedi-
ately generalised withU(1) replaced by any abelian groupAexcept that the Dixmier–Douady
class lives inH2(X,A). In particular we can consider bundle gerbes for any cyclic subgroup
Zd ⊂ U(1). The Dixmier–Douady class then lives inH2(X,Zd) and we call these torsion
bundle gerbes orZd bundle gerbes.

It is natural to think of a torsion bundle gerbe as aZd subbundle of theU(1) bundle
L → Y [2] which is stable under multiplication. TheU(1) bundle gerbe has Dixmier–
Douady class inH3(X,Z) which is the Bockstein of the torsion bundle gerbe class in
H2(X,Zd). Notice that there are two different notions of triviality for torsion bundle
gerbes, the first is the vanishing of the class inH2(X,Zd) or torsion bundle gerbe triv-
iality and the second is the vanishing of the associatedU(1) bundle gerbe or the
vanishing of the class inH3(X,Z). The former implies the latter but not vice
versa.

Standard results in topology tell us that every class inH3(X,Z) which is torsion arises as
the Bockstein of a class in someZd . Hence every bundle gerbe with torsion Dixmier–Douady
class is stably isomorphic to a torsion bundle gerbe.

4.3. Lifting bundle gerbes

A common example of bundle gerbes is the so-calledlifting bundle gerbe. Let

U(1) → Ĝ
π−→G (4.1)

be a central extension of Lie groups and letP → X be a principalG bundle. Then there is
a mapg : P [2] → G defined byp1g(p1, p2) = p2. We can consider the central extension
as aU(1) bundle overG and pull it back byg to aU(1) bundle overP [2] . The fibre over
(p1, p2) is the set of all̂g in Ĝ such thatp1π(ĝ) = p2. The product structure on̂G defines
a bundle gerbe product. The resulting bundle gerbe is called the lifting bundle gerbe of
P → X.

Given the bundleP → X it is natural to ask if there is âG bundleP̂ → X such that
P̂/U(1) is isomorphic toP as aG bundle. It is well known that this is true if and only if a
certain class inH3(X,Z) vanishes. It is also easy to show[16] that such a lift is possible if
and only if the lifting bundle gerbe is trivial. Moreover the class of the lifting bundle gerbe
is the three class obstructing the lift.

The examples we need in this paper are torsion bundle gerbes. For these the central
extension is of the form

Zd → Ĝ
π−→G (4.2)

for some cyclic subgroupZd ⊂ U(1). In this case the obstruction to lifting theG bundle to
a Ĝ bundle lives inH2(X,Zd) and again corresponds with the Dixmier–Douady class of
the torsion bundle gerbe.
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4.4. Stable isomorphism of bundle gerbes

For bundle gerbes there is a notion calledstable isomorphismwhich corresponds exactly
to two bundle gerbes having the same Dixmier–Douady class. To motivate this consider the
case of two hermitian line bundlesL → X andJ → X they are isomorphic if there is a
bijective mapL → J preserving all structure, i.e. the projections toX and theU(1) action
on the fibres. Such isomorphisms are exactly the same thing as trivialisations ofL∗ ⊗ J .
For the case of bundle gerbes the latter is the correct notion and we have the following
definition.

Definition 4.3. A stable isomorphism between bundle gerbes(L, Y) and(J, Z) is a trivial-
isation ofL∗ ⊗ J .

We have from[17] the following proposition.

Proposition 4.4. A stable isomorphism exists from(L, Y) to (J, Z) if and only ifd(L) =
d(J).

If a stable isomorphism exists from(L, Y) to (J, Z) we say that(L, Y) and(J, Z) are
stably isomorphic.

It follows easily that stable isomorphism is an equivalence relation. It was shown in[16]
that every class inH3(X,Z) is the Dixmier–Douady class of some bundle gerbe. Hence we
can deduce fromProposition 4.4the following theorem.

Theorem 4.5. The Dixmier–Douady class defines a bijection between stable isomorphism
classes of bundle gerbes andH3(X,Z).

It is shown in[17] that a morphism from(L, Y) to (J, Z) induces a stable isomorphism
but the converse is not true.

4.5. Bundle gerbe connections and curving

Let (L, Y) be a bundle gerbe overY . Before defining connections we need a useful long
exact sequence from[16]. LetY [p] → Xbe thepth fold fibre product ofY over the projection
map toX. That isY [p] is the subset ofYp consisting of pairs(y1, . . . , yp) with the property
thatπ(y1) = π(y2) = · · · = π(yp). There are projection mapsπi : Y [p] → Y [p−1] which
omit theith component. We use these to define a map on differential forms

δ : Ωq(Y [p−1]) → Ωq(Y [p]) (4.3)

by

δ(η) =
p∑

i=1

(−1)iπ∗(η).
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Note thatδ commutes with exterior derivative. It is shown in[16] that the long sequence

0 → Ωq(X)
π∗
−→Ωq(Y)

δ−→Ωq(Y [2])
δ−→Ωq(Y [3])

δ−→· · · (4.4)

is exact for everyq.
A connection∇ onL → Y [2] is called a bundle gerbe connection if it commutes with the

product structure onL. To be more precise, overY [3] , the bundle gerbe multiplication defines
a bundle isomorphismm : π−1

3 (L)⊗π−1
1 (L) → π−1

2 (L). On the bundleπ−1
3 (L)⊗π−1

1 (L)

we have the connectionπ−1
3 (∇) ⊗ π−1

1 (∇) and onπ−1
2 (L) the connectionπ−1

2 (∇). We
require that these are equal under the isomorphismm. It can be shown[16] that bundle
gerbe connections exist. The curvature of a bundle gerbe connectionF∇ satisfiesδ(F∇) =
0, whereδ is defined in(4.3). Using the exactness of(4.4)we see that there is a (not unique)
two-form f on Y satisfyingδ(f) = F . A choice of such anf we call acurving for the
bundle gerbe connection. In string theory we would refer tof as theB-field. We have that
δ(df) = dδ(f) = dF = 0 so, using exactness again, df = π∗(ω) for some three-formω
onX. As π∗(dω) = dπ∗(ω) = ddf = 0 we see that dω = 0. The three-formω is called
the three-curvature of the bundle gerbe connection and curving. In string theory it is the
H-field. As for line bundles the three-curvature represents the image, in real cohomology,
of the Dixmier–Douady class.

We can extend the notion of stable isomorphism to bundle gerbes with connection and
curving by saying that a bundle gerbe(L, Y) with connection∇ and curvingf is trivial if
there is a line bundleJ → Y with connection∇J and a bundle gerbe isomorphismδ(J) = L

which mapsδ(∇J ) to ∇ and for whichf = F∇J . Then two bundle gerbes with connection
and curving(L, Y) and(K,X) are stably isomorphic if(L ⊗ J∗, Y ×f X) is trivial, as a
bundle gerbe with connection and curving. Then we have the following theorem.

Theorem 4.6 ([17]). The set of all stable isomorphism classes of bundle gerbes with con-
nection and curving is equal to the Deligne cohomologyH3(X,D3).

4.6. Deligne cohomology of a bundle gerbe with connection and curving

An explicit map to Deligne cohomology can be defined as follows. Let{Uα} be a good
open cover ofX admitting local sectionssα : Uα → X. We can define a maps : YU → Y ,
commuting with projections toX, bys(α, x) = sα(x). This induces mapss[p] : Y [p]

U → Y [p]

which can be used to pull-back the line bundleL → Y [p] to a line bundle(s[2])−1(L) →
Y

[2]
U . As the pairwise intersections are contractible we can trivialise the line bundle by

sectionsσαβ over eachUα ∩Uβ. Then we can multiplyσαβ andσβγ using the bundle gerbe
product. OverUα ∩ Uβ ∩ Uγ we must haveσαβσβγ = gαβγσβγ for some functiongαβγ

which is, in fact, a Cech cocycle. Also definekαβ ∈ Ω1(Uα ∩ Uβ) by ∇σαβ = kαβσαβ and
fα ∈ Ω2(Uα) by fα = s∗α(f). In string theory this is how theB-field is usually presented as
a collection of two-forms. The triple [gαβγ , kαβ, fα] defines a Deligne cohomology class.
The curvature of this Deligne class is the three-curvature of the bundle gerbe connection
and curving.

It follows that every bundle gerbe connection and curving defines a holonomy, that is an
number inU(1) assigned to any surface inX. To define this explicitly consider a bundle
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gerbe with connection and curving over a surfaceΣ. Then asH3(Σ,Z) = 0 this is a trivial
bundle gerbe with a trivialisationJ → Y . It can be shown[17] that we can find a connection
∇J on J such thatδ(∇J ) = ∇. We say such a connection is compatible with the bundle
gerbe connection. Thenδ(F∇J − f) = 0 so thatF∇J − f = µJ for some two-formµJ on
Σ. Define

hol(∇, f,Σ) = exp

(∫
Σ

µJ

)
.

We leave it as an exercise to confirm that this is the same as the holonomy of the Deligne
class constructed as inSection 3.2from the bundle gerbe with connection and curving. As
for the case of Deligne cohomology we often also compute holonomy of a mapσ : Σ → X

by first pulling the bundle gerbe with its connection and curving back toΣ.
As the bundleL → Y [2] for a torsion bundle gerbe has a reduction toZd it has a canonical

flat connection. Because the curvature of the flat connection vanishes the zero two-form onY

is a curving. The flat connection and zero curving provide a canonical choice of connection
and curving for any torsion bundle gerbe. We leave it as an exercise for the reader to show
that the Deligne cohomology class defined by the flat connection and zero curving is the
canonical Deligne cohomology class of a class inH2(X,Zd) defined inSection 3.5.

4.7. Local bundle gerbes

If U = {Uα}a∈I is an open cover ofX and we defineYU as in(3.2)a bundle gerbe(L, YU)

is just a collection of line bundlesLαβ → Uα ∩ Uβ. This is a gerbe in the sense of Hitchin
and Chatterjee. If we restrict further and require that the cover be good we can assume all
theLαβ are trivial. In that case bundle gerbe multiplication must take the form

((α, x), w) ⊗ ((β, x), z) �→ ((γ, x), gαβγ(x)wz)

for some co-cyclegαβγ : Uα ∩ Uβ ∪ Uγ → U(1) and, moreover, a connection and curving
define exactly a representative for a Deligne cohomology class in the double complex(3.4).

The local description of bundle gerbes follows from these results. Choose a good cover
U and local sectionssα : Uα → Y . Then these define a maps : YU → Y by s(α, x) = sa(x)

which is fibre preserving. We can use this to pull-back the bundle gerbe(L, Y) to a stably
isomorphic bundle gerbe(s−1(L), YU) and calculate locally.

4.8. Stable isomorphism and gauge transformations

In the case of abelian gauge theory we are interested inU(1) bundles with connection
and curving and these determine a Deligne one class. If we act on the bundle with a gauge
transformation then the Deligne class is unchanged. The converse is also true. To see this
letL be a bundle with connectionsA1 andA2 defining the same Deligne class. Pick a point
m0 ∈ X. For any other pointm choose a pathγ from m to m′ and consider the parallel
transportsP1(γ) andP2(γ) from Lm0 to Lm. These define an isomorphism

P2(γ)P1(γ)
−1 : Lm → Lm.
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If we choose another pathγ ′ then we have

Pi(γ
′) = Pi(γ)hol(γ#γ ′, Ai)

but hol(γ#γ ′, A1) = hol(γ#γ ′, A2) so that

P2(γ)P1(γ)
−1 = P2(γ

′)P1(γ
′)−1,

and the result is a gauge transformationg : L → L. Clearly this maps the parallel transport
for A1 to the parallel transport forA2 and hence mapsA1 to A2. We conclude that any two
connections with the same Deligne class differ by a gauge transformation.

For bundle gerbes we know that any two bundle gerbes with the same Deligne class differ
by a stable isomorphism with connection. Any two stable isomorphisms differ by a uniquely
determined line bundle with connection in the sense that ifJ → Y andK → Y are stable
isomorphisms then there is line bundleL → X such thatJ = π−1(L) ⊗ K. In additionL
has a connection and the isomorphismJ = π−1(L)⊗K identifies the connection onJ with
the product of the pull-back connection onπ−1(L) and the connection onK. Note that it is
possible to compose stable isomorphisms but the composition is not associative[17,22].

In the case of stable isomorphisms from a bundle gerbe(P, Y) to itself the situation is
somewhat simplified as we have a distinguished stable isomorphism—the identity. It follows
that every stable isomorphism from(P, Y) to (P, Y) is determined by a line bundleJ onX

with connection∇. We conclude that a gauge transformation of a bundle gerbe(L, Y) with
connection∇ and curvingf is a line bundleJ → X with connectionD. Some calculation
shows that it defines a stable isomorphism between(L, Y) with ∇ andf and(L, Y) with
∇ andf + π∗(FD), whereFD is the curvature of the connectionD onJ → X. If we take
local sections and represent the Deligne class of(L, Y) with ∇ andf by (gαβγ , aα, fαβ)

then the stable isomorphism changes it by addition ofD(kαβ,Aα) = (1,0,dAα), where
kαβ are transition functions forJ andAα are local connection one-forms forD.

Note: Hitchin has remarked (Arbeitstagung lecture, Max Planck Institute, Bonn, 2001)
that gauge transformations for gerbes form a category, they are certainly not a group.

4.9. Trivial bundle gerbes

Consider a bundle gerbe with connection and curving and Deligne classξ. If the Dixmier–
Douady class (c(ξ)) is zero then the bundle gerbe is trivial and we can repeat the discussion
in the definition of holonomy inSection 4.6and find a global trivialisationJ → Y with
connection∇J . The two-formµJ is then a two-form onX. If we compare with the sequence
(3.8)we can show thatι(µJ) = ξ the Deligne class of the bundle gerbe. As inSection 3.7
we can useµJ to define a sectionχµJ of Lξ overL(X).

If we change to another trivialisationJ ′ and connection∇′ then there is a bundleK → X

with connection∇K such thatJ ′ = J⊗π−1(K),∇J ′ = ∇J ⊗π−1(∇K) andµJ ′ = µJ +FK,
whereFK is the curvature of∇K. Then we have (cf.(3.16))

χµJ ′ (σ) = hol(∇K, ∂(σ))χµJ (σ).

Notice that the action of a gauge transformation is precisely that of tensoring the trivialisation
J and its connection∇J with the pull-back of a line bundleK → X with connection∇K. It
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follows that the change in the action(2.5)arising from changing the trivialisationχρ can be
regarded as resulting from a gauge transformation acting on the trivialisation. To be precise
the gauge transformation(K,∇K) acting results in the value of the action on a world sheet
σ being multiplied by

exp

(∫
Σ

σ∗(FK)

)
,

whereFK is the curvature of∇K.

4.10. Bundle gerbe modules

Let (L, Y) be a bundle gerbe over a manifoldX and letE → Y be a finite rank, hermitian
vector bundle. Assume that there is a hermitian bundle isomorphism

φ : L ⊗ π−1
1 E

∼−→π−1
2 E (4.5)

which is compatible with the bundle gerbe multiplication in the sense that the two maps

L(y1,y2) ⊗ (L(y2,y3) ⊗ Ey3) → L(y1,y2) ⊗ Ey2 → Ey1,

and

(L(y1,y2) ⊗ L(y2,y3)) ⊗ Ey3 → L(y1,y3) ⊗ Ey3 → Ey1

are the same. In such a case we callE a bundle gerbe module and say that the bundle gerbe
acts onE.

Notice that ifE has rank one then it is a trivialisation ofL. Moreover ifE has rankr then
Lr acts on∧r(E) and we deduce the following proposition.

Proposition 4.7. If (L, Y) has a bundle gerbe moduleY → E of rank r then its Dixmier–
Douady classd(L) satisfies rd(L) = 0.

A connection∇E is called a bundle gerbe module connection if the bundle gerbe has
a connection and the induced connections onL ⊗ π−1

1 E andπ−1
2 E are equal under the

isomorphism(4.5).
If the bundle gerbe arises as the lifting bundle gerbe associated to a principalG bundle

P → X, where there is a central extension

U(1) → Ĝ → G,

it follows from the definition of bundle gerbe module they are the same thing as bundles
E → P with Ĝ action covering theG action onP and such that the action ofU(1) on any
fibreEp overp ∈ P is scalar multiplication. For example in the case of

Zn → SU(n) → PU(n),

the trivial bundleV × P is a bundle gerbe module wheneverV carries a representation of
SU(n).
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4.11. Holonomy of bundle gerbe modules

We show in this subsection how, given a bundle gerbe module over a manifold, the
holonomy of a connection on a bundle gerbe module defines a section of the line bundle
(defined inSection 3.6) over the loop space of the manifold. Although the result is general
our applications are when the manifold in question is the submanifoldQ as inSection 2.
Our construction is motivated by the construction in[12] using Azumaya algebra module
connections.

Consider a bundle gerbe(R, Y) overQ with a connection and curving defining a torsion
Deligne classζ. The example we need inSection 2is the lifting bundle gerbe for aPU(n)

principal bundle overQ. LetE → Y be a bundle gerbe module with a bundle gerbe module
connectionA. We wish to define a section tr hol(A) of Lζ → L(Q) by constructing a
functionsA : D(Q) → C and showing that it transforms as in(3.12).

Let σ : D → Q be a map of a disk intoQ and pull the bundle gerbe and connection
and module back toD. OverD the bundle gerbe is trivial. Choose a trivialisationJ with
connection∇J compatible with the bundle gerbe connection and with curvatureFJ . Then
we have seen inSection 4.6thatf − FJ = π∗(µJ) for someµJ a two-form onD. Note
also thatE ⊗ J∗ with connectionA − ∇J descends to a bundleEJ onD with connection
DJ . We define

sA : D(Q) → C

by

sA(σ) = tr hol(DJ)exp

(∫
D

µJ

)
(4.6)

where the holonomy is computed over the boundary ofσ. We need to check thatsA is
independent of the choice ofJ and∇J .

Lemma 4.8. The functionsA : D(Q) → C depends only on A not on the choice of
trivialisation J or connection∇J .

Proof. If we change to another trivialisationJ ′ with connection∇′
J then there is line bundle

K onDwith connection∇K such thatJ = π−1(K)⊗J ′ and∇J = π−1(∇K)⊗∇′
J . Similarly

EJ = E′
J ⊗ K andDJ = D′

J ⊗ ∇K. Hence

hol(DJ) = hol(D′
J ⊗ ∇K) = hol(D′

J )hol(∇K) = hol(D′
J )exp

(
−

∫
D

FK

)

so that

sA(σ) = tr hol(DJ)exp

(∫
D

µJ

)
= tr hol(D′

J )exp

(
−

∫
D

FK

)
exp

(∫
D

µJ

)

= tr hol(D′
J )exp

(∫
D

µ′
J

)
,

and the functionsA is independent ofJ and∇J . �
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Next we have the following lemma.

Lemma 4.9. The functionsA transforms as a section ofLζ.

Proof. Assume now that we have two mapsσi : D → Q which agree withσ on the
boundary. Trivialise the pull-back byσ1#σ2 of Lζ over the whole of the two-sphere. Denote
this trivialisation byJ and its connection by∇J and use subscriptsi to denote the restrictions
to the two hemispheresD1 andD2. Then

s(σ1) = tr hol(DJ1)exp

(∫
D1

µJ1

)
= tr hol(DJ2)exp

(∫
D1

µJ1

)

= tr hol(DJ2)exp

(∫
D2

µJ2 exp

(∫
S2

µJ

))
= s(σ2)exp

(∫
S2

µJ

)
,

so thats is a section ofLξ. We use here the fact thatσ1 andσ2 agree on the boundary ofD
and thatDJ1 andDJ2 agree on this common boundary. �

We now define the section tr hol(A) : L(Q) → Lζ to be that given by the functionsA.
This means we have defined all of the terms in the tensor product(2.7). That the result is a
function is a consequence of these definitions.

In the case that the bundle gerbe is not torsion it was shown in[2] that twistedK-theory
could be constructed from bundle gerbe modulesE → Y whose structure group was reduced
to the group of unitaries on an infinite dimensional Hilbert spaceH (isomorphic to the fibres
of E) which differ from the identity by a compact operator. If we require a slightly stronger
result, that the bundle gerbe module have a reduction to the group of unitaries onH that
differ from the identity by something which is trace class then in the formula(4.6) the
quantity hol(DJ) is a unitary differing from the identity by a trace class operator. Choose
now two bundle gerbe module connectionsA1 andA2 on E so we have hol(D1,J ) and
hol(D2,J ) which are unitaries differing from the identity by a trace class operator. Hence
we can define

s(σ) = tr(hol(D1,J ) − hol(D1,2))exp

(∫
D

µJ

)
.

To see that this is well-defined and a section ofLζ is a repeat of the calculation above. We
have

hol(Di,J ) = hol(Di,J ′)hol(∇K)

for i = 1,2 so that

hol(D1,J ) − hol(D2,J ) = (hol(D1,J ′) − hol(D2,J ′))hol(∇K),

giving

tr(hol(D1,J ) − hol(D2,J )) = tr(hol(D1,J ′) − hol(D2,J ′))hol(∇K),

and the argument goes through as above to define a section tr(hol(A1) − hol(A2)) of Lζ

overL(Q).
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We have made sense of all of the terms in the tensor product(2.7)and by construction it
is a well-defined function onΣQ(M).

5. Torsion bundle gerbes and C∗-algebras

In this section we show how to relate torsion bundle gerbes to certain continuous trace
C∗-algebras. In the course of this discussion we will explain the relation between Kapustin’s
work [2,12].

We start with a principal bundleπ : Y → X with structure groupPU(n). All torsion
elements ofH3(X,Z) (Cech cohomology) arise as the Dixmier–Douady class of the lifting
bundle gerbeP → Y [2] associated toπ : Y → X for some choice ofn. Fix one torsion
class inH3(X,Z) and letP be the lifting bundle gerbe associated to this class by the central
extension

Zn → U(n) → PU(n).

We use the theory of locally compact groupoidC∗-algebras as developed by[14,15,20]. To
this end observe thatY [2] is the groupoid of a relation onY namely we sayy1 ∼ y2 if y1
andy2 lie in the same fibre ofπ : Y → X. The set of equivalence classes under this relation
is X. In factY [2] is a proper groupoid with unit spaceY because it is easy to check that it
satisfies the requirement[14] that the mapπ0 : Y [2] → Y ×Y which regardsY [2] as a subset
of the productY × Y is a homeomorphism onto a closed subset of the product space. Note
that the mapsπ1 andπ2 from Y [2] → Y are the range and source maps respectively of this
groupoid which has, as its operations, the product(y1, y2)(y2, y3) = (y1, y3) and inverse
(y1, y2)

−1 = (y2, y1). We identify the unit spaceY with the diagonal{(y, y)|y ∈ Y}.
Now we remark thatY [2] is locally compact and admits a Haar system. We recall con-

struction of the latter. AsY → X admits local sections we can use the resulting local
trivialisation to choose for(y1, y2) ∈ Y [2] a measureλy1 on the{(y1, y)|y ∈ Y, π(y) =
π(y1)} ⊂ Y [2] . In fact we may take forλy1, Haar measure onPU(n) as the measure on
{(y1, y)|y ∈ Y, π(y) = π(y1)} using the local trivialisation to identify these spaces. Note
that a set{(y1, y)|y ∈ Y, π(y) = π(y1)} may be identified withPU(n) in many ways de-
pending on which open set of the cover we choose. However, we fix one choice for each
fibre throughout. This involves a choice from only finitely many options as our spaceX

is paracompact and the cover ofX is locally finite. The set of measures{λy1|y1 ∈ Y} is
easily seen to define a Haar system onY [2] . We remark that there is one technical condition
on a Haar system that may not be obvious. This is that ifCc(Y

[2]) denotes the continuous
functions of compact support onY [2] then we have for allf ∈ Cc(Y

[2]) that the map
(y1, y2) → ∫

f(y1, y)dλy1(y1, y) is continuous. After a moments thought one sees that the
construction of our measures via the local trivialisation guarantees this.

We may describe the groupoid structure onP in a number of ways. To make use of the
results of[15] we will use the language of principalBbbT-groupoids. This means that we
will regardP as an extension of the groupoidY [2] in the sense of Definition 2.2 of[13].
To this end we observe thatP/T ≡ Y [2] becauseP is aU(1) bundle overY [2] . We may
define the range and source maps ofP to ber, s : P(y1,y2) → Y , wherer(z) = (y1, y1) and
s(z) = (y2, y2) for z ∈ P(y1,y2). The sense in whichP is an extension ofY [2] arises from the
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existence of a two-cocycle onY [2] defined via the multiplication inP . Recall thatP(y1,y2)

consists of those elementsu of U(n) such thaty1.p(u) = y2, wherep : U(n) → PU(n)

is the projection. We will regard our extension ofPU(n) as a set of pairs(g, t), where
g ∈ PU(n) andt ∈ Zn. This can be achieved globally by choosing a Borel cross-section
c of p. Note that asp has discrete fibres we may choosec to be locally constant. The
multiplication inU(n) is then written

(g1, c(g1))(g2, c(g2)) = (g1g2, c(g1g2)ω(g1, g2)) (∗ )

whereω is a group two-cocycle onPU(n). It is now not hard to recogniseP as a principal
T-groupoid as described in[14].

The next step is to identify the Dixmier–Douady class ofP regarded as a bundle gerbe. It is
determined by choosing a good cover{Uα} ofX and transition functionsgαβ : Uα∩Uβ → Y

for the bundleY → X. Then the Dixmier–Douady class ofP is defined by the multiplication
onP . We can write this multiplication using the locally constant cross-sectionc and(∗) as

c(gαβ(m))c(gβγ(m)) = c(gαγ)ω(gαβ(m), gβγ(m)).

It follows from this thatω determines the Dixmier–Douady class ofP as a bundle
gerbe.

Now we need to describe theC∗-algebra associated with this principalT-groupoidP . Let
Γc(P) denote the sections ofP → Y [2] which are of compact support. These may be thought
of as functions:f : P → C satisfyingf(z.t) = tf(z) for z ∈ P . There is a multiplication
onΓc(P) given by

f ∗ g(z1) =
∫

f(z1z2)g(z
−1
2 )dλs(z1)(ż2),

whereż2 is the image ofz2 underP → Y [2] . The involution is

f ∗(z1) = f̄ (z−1
1 ).

We denote byC∗(P, Y [2], λ) theC∗ completion ofΓc(P) following the notation and defi-
nitions of[14].

The conclusion of the main result of[14] is that the principalT-groupoidC∗-algebra
C∗(P, Y [2], λ) is continuous trace with spectrumX. The technical assumption of[15] that
Y → X admits local sections is clearly satisfied so that we may applySection 5of [15]. This
states that the Dixmier–Douady class ofC∗(P, Y [2], λ), is the obstruction toC∗(P, Y [2], λ)

being Morita equivalent to theC∗-algebra of continuous functions onX which vanish at
infinity C0(X).

We need to verify that the Dixmier–Douady class ofC∗(P, Y [2], λ) is the same as the
Dixmier–Douady class ofP as a bundle gerbe. This is notationally messy and to save
space we refer the reader to 128 pp. of[15]. There, in the discussion centring around
equations (5.5) and (5.6), the Dixmier–Douady class ofC∗(P, Y [2], λ) is shown to arise
from ω in essentially the same fashion as does the Dixmier–Douady class ofP as a bundle
gerbe.

Using the known fact[21] that two continuous traceC∗-algebras with the same spectrum
and Dixmier–Douady class are Morita equivalent we conclude that if we have an Azumaya
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algebra overX as in[12] with the same Dixmier–Douady class asP then it must be Morita
equivalent toC∗(P, Y [2], λ).

We can see that the bundle gerbe moduleE for P is a module forC∗(P, Y [2], λ). Let
f ∈ Γc(P) and letξ be a smooth, compactly supported section ofE. It is convenient at this
point to regard the bundle gerbe action onE as being given by a mapφ(y1, y2) : Ey2 →
Ey1. With this choice we can integrate theP action up a fibre. So ifξ is a section ofE we
write

φ̃(y1, y2)ξ(y1, y1) = φ(y1, y2)ξ[(y2, y1)(y1, y1)(y1, y2)] = φ(y1, y2)ξ(y2, y2).

The reason for the conjugation action of the groupoidY [2] on Y is that this is how it acts
on the diagonal. Now we have to integrate this to get an action off ∈ Γc(P). We set, for
z ∈ Py1,y2, ż = (y1, y2) and define

fξ(r(w)) :=
∫

f(z)φ(ż)ξ(s(w))dλr(w)(ż).

We could go further but desist at this point for the reason that we do not know how to
make the above discussion work when the Dixmier–Douady class is non-torsion. Indeed
this was the whole reason for introducing bundle gerbe modules in the first place: they give
a realisation of twistedK0 without the need to introduce operator algebras.
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