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Abstract

This paper shows how to construct anomaly free world sheet actions in string theory with
D-branes. Our method is to use Deligne cohomology and bundle gerbe theory to define geometric
objects which are naturally associateddebranes and connections on them. The holonomy of
these connections can be used to cancel global anomalies in the world sheet action.
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1. Introduction

It has been noted by a number of authors particularly Freed—Witten and Kaf@, $2h
that theB-field, in D-brane theory, defines a Deligne cohomology class and this interpreta-
tion has been used to show how anomaly cancellation occurs in the world sheet action.
The mathematical formalism underlying these observations starts with a space-time man-
ifold M with a submanifold) c M, the D-brane, and a good open covée {U,}c; Of
M (recall that this means that every finite intersection of elemeritdsrcontractible). The
B-field is a collection of smooth de Rham two-ford®, },<; with B, defined onU, and
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satisfying @, = dBg onU, N Ug for all o, B € 1. Thus{dB,}c; defines a three-formi
on M. For full treatments, s€®,18,23,24]

The B-field has various mathematical interpretations which depend on associated topo-
logical and geometric structures. These interpretations include: a Cech representative for
Deligne cohomology, a differential character, a connection and curving on a gerbe, a con-
nection and curving on a bundle gerbe, a connection®® &undle[7] or some differential
geometric structure onRU(H) bundle. It is not clear to us if physics can distinguish be-
tween these different mathematical realisations 8ff&eld. In this paper we focus on the
differential character or Deligne class which is the minimal geometric datum necessary to
build world sheet actions.

In the simplest case the-field restricts on theD-braneQ to the Stiefel-Whitney class
of the normal bundle t@. Then world sheet anomaly cancellation, or equivalently, the
construction of world sheet actions was investigatefjnin this paper we show that for
this case the differential character viewpoint alone suffices. This refines the regaltgof
that it eliminates any dependence of the action on choices such as open covers and makes
explicit some other necessary but subtle choi@2) which affect the definition of the
action.

In order to build a world sheet action in the more difficult situation where there is a
general torsiorB-field on Q (thatisH = 0 on Q) we need to introduce bundle gerbes and
bundle gerbe modules. These provide an alternative to the Azumaya algebra modules of
[12]. Our approach provides a refinement of the conclusiof$2jfin making explicit the
extent of dependence on choices made in the construction.

Finally, bundle gerbe modules with infinite dimensional fibre are needed for world sheet
actions in the presence of a non-torsigifield (i.e. H is non-zero ornQ, see[1,11]). This
case has not been successfully treated previously. We propose here a way to produce an
anomaly free world sheet action (this is the main result in the paper).

The paper is organised as follow&ection 2contains an overview of our constructions
without proofs. Proofs of the assertionsSaction 2are presented in the remaining sections.

We review some results on Deligne cohomology, its holonomy and the differential char-
acter inSection 3 Included here is a discussion of the notion of transgressing a Deligne
two class on a manifold to a Deligne one class on the loop space of the manifold although
our account emphasises the transgression of the differential character. This is sufficient to
handle the situation considered[8].

For the more difficult case of anomaly cancellation in the presence of general torsion
B-fields we need more mathematical structure. This is because the world sheet action is
a priori a section of a non-trivial line bundle. We use bundle gerbes and bundle gerbe
modules to introduce new line bundles which can be tensored with the original line bundle
and trivialise it.

Section 4.Teviews relevant aspects of our earlier pg@gwhere we used bundle gerbes
to give a geometric approach to twist&dtheory. Here we explain the geometry of bundle
gerbes and their relation to Deligne cohomology to connect up with the discussion of
Section 3Understanding how the action depends on choices made in its definition requires
us to study gauge transformations of a bundle gerbe. These generalise the familiar idea of a
gauge transformation on a line bundle. Thesattion 4.11he holonomy of a connection
on a bundle gerbe module is introduced motivated by the analogous construdfighfor
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Azumaya algebra modules. For torsiBrfields, as in12], the trace of this bundle gerbe
holonomy is a section of a line bundle over the loop spaa@ ahd we tensor this on to our
original world sheet action in order to convert it from a section of a non-trivial line bundle
to a function.

Our main observation is that a modification of this construction may be Geeti¢n 4.11
to handle the case of non-torsi@field.

Finally, in Section 5 we round out our account by explaining the relationship with the
approachifil2]. The pointisthatin the case of torsirfield there is a groupoid*-algebra
with spectrumM which acts on bundle gerbe modules o%ér This groupoidC*-algebra
is continuous trace and hence has a Dixmier—Douady class. It is then Morita equivalent to
any Azumaya algebra with spectruviihaving the same Dixmier—Douady class. Azumaya
algebras and their modules are used in [12] to construct twistéueory. It follows then
that theK-theory of the groupoid algebra and the Azumaya algebra are the same whenever
their Dixmier—Douady classes are equal and both give the twistéteory of M. However
we do not take th&*-algebra approach further because we do not know how to make it
work in the non-torsion case.

2. Action building

In this section we list some basic facts about Deligne cohomology and show how they
can be used to generate anomaly free world sheet actions. In the subsequent sections we
give the mathematical background necessary to establish these facts.

Let M be a manifold with a submanifol@. Let X be a Riemann surface with a single
boundary component which is identified with the cirgfe Denote by>(M) the space of all
maps ofX into M and byL (M) the space of all maps of the circ$é into M. By restricting
a map ofX into M to the boundary circle we obtain a map of the circle intoThis defines
amap we calb : ¥(M) — L(M). We will be particularly interested in the subset of maps
of X into M which map the boundary circle into the submanif@glddWe denote these by
Y o(M). There is a commuting diagram

M S LM
u U (2.1)
ZoM) & L(Q)

World sheet actions are functions aip (M). The world sheet actions that we are interested
in will arise from sections of line bundlds — X (M) constructed from geometric objects
on Q andM. The primary geometric object we are interested in is the Deligne class which
is a geometric interpretation of thiefield.

Let us review some basic facts about Deligne cohomology. On a madiftiére is the
groupHP? (X, DP) of Deligne p classes. For now we need only a few results about this.

2.1. Properties of Deligne classes

First there is a homomorphism (s8ection 3.2
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c: HP(X,DP) — HPL(X, 7).

If £ is a Delignep class we calt(§) its (characteristic) class.
There is also a homomorphisr8éction 3.2

1 27(X) — HP(X,DP),

which sends @ form p to a Deligne class(p) and we have(t(p)) = 0 for any p form

p. The kernel of is £27 (X) the space of all closeg-forms whose integral over any closed
submanifold is 2i times an integer. This discussion is summarised by the exact sequence
of groups(3.8)

0— 27(X) > 2/ (X)— HP (X, D’)-> HPHY(X, Z) — O.

There is also a map
HP(X,DP) — 2P (X),

which associates to a Deligne clgss curvatureF: which is a closed form. The de Rham
class ofF; is the image of 2ic(¢) in real conomology.

If y: ¥ — X is a map of gp-dimensional manifold® into X andé € HP (X, DP) is a
Deligne class there isl@lonomyhol(¢, y) € C*.

It is known thatH2(X, D?) is the group of all isomorphism classes of line bundleston
with connection. In this case the connection determines a curvature and a holonomy which
are the curvature and holonomy of the corresponding Deligne class.

2.2. Transgression

Letev : St x L(X) — X be the evaluation map and recall that there is a transgression
map

T 2PMNX) > QP(L(X)),

defined as follows. IfF € 2P+1(X) thent(F) is the result of pulling back with ev to
$1 x L(X) and then integrating over the circle. There is an analogous map

T HP*Y(X,7) - HP(L(X), 7).
2.3. Deligne class of a torsion class

Next we need a result about torsion classesction 3.5. Let Z,; C U(1) be the group
of dth roots of unity. Then to any clags € H?” (X, Z) there is a Deligne class(u) €
HP? (X, DP). The class otv(u) is the image ofx under the Bockstein maf? (X, Z;) —
HP*1(X, Z) induced by the short exact sequence

7244z 2% 7.
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2.4. Line bundle on loop space

For every Deligne class in H2(X, D?) there is a line bundlds — L(X) over the
loop space oK (Section 3.8. This correspondence is essentially a homomorphism, that is
Legyn =Le®Ly, Lg = LyandLo = U(1) x L(X). Itis important to note here that these
really are equalities in the sense that there are canonical isomorphisms in each case. The
Chern class ol is the transgression of the classéof

There is also a natural connection bp — L(X) whose curvature is the transgression
of F; and whose holonomy is determined as followsy S x L(X) then the holonomy
aroundy is the holonomy of around ew id x y, where idx y : ST x St — §1 x L(X)
is the map(id x )(6, ¢) = (0, Y(¢)).

2.5. Sections of the line bundle on loop space

We are interested in sections of the lihe — L(X) and its pullback ta¥'(X).
The first of these arises because there is a canonical non-vanishing section (trivialisation)

ds: Z(X) — 3 H(Le)

defined below irEq. (3.13)

The second case is whei) = 0. Then the transgression of¢) is zero and hence
c(Lg) = 0. It follows thatL is trivial or admits a global non-vanishing section. But now
there is not a canonical section. However if we choosevath ((p) = & then we can
construct a section

Xp L(X) — Lg.

Notice that, from the exact sequence of gro(f8) mentioned above if we changeto t

with ((v) = & thent — p is a closed two-form whose integral over any two surface is an
integral multiple of Zri. The two-formr also defines a sectiog, of Lz so we must have
that x, = wy. for some functionw : L(X) — U(1). The functionw is defined as follows.

If o is a map of a diskD into X with boundary a loopy the function

w(y) = eXp(/ o (T — p))
D

is well-defined and independent of the choiceroThis construction is, of course, just the
definition of the Wess—Zumino-Witten actionof- p. We will see inSections 4.8 and 4.9
how to understand this fact in terms of gauge transformations of bundle gerbes.

With these observations we can construct world sheet actions. We start with the following
result of Freed and Wittef6]. The theory of elliptic operators can be used to construct a
line bundleJy — L(Q) with a section

Pfaff : Zo(M) — 0 1(Jp).

Letw, € H2(Q, Z») be the second Steifel-Whitney class of the normal bundt@.dFhis
is a torsion class s@(w») is a Deligne class i#/3(Q, D3).

The line bundleJy has Chern class the transgressiorc@f(wz)) and a natural flat
connection whose holonomy alogg ST — Q is given by(id x )*(w»). It follows from
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the discussion above thét,(,,) with its natural connection is isomorphic # and has
the same holonomy. Hence we can regard Pfaff as a

Pfaff : Zo(M) — 0 (Lauy)- (2.2)

up to a choice of a constant depending onfrbraneQ.
2.6. Casel

Assume thatth@-field or equivalently the Deligne two clasi defines (se&xample 3.3
on all of X is such that

c(§1g) = c(a(w2)). (2.3)

It follows thatLg, — L(Q) andLqwy, — L(Q) are isomorphic ovek(Q). By choosing

somep € £22(Q) with ((p) = & o — a(wz) we obtain a non-vanishing sectigg, of
L:® L;(wz). Finally notice thaﬁ—l(L,g) — X(X) has a non-vanishing sectign ¢ over

X (X) and this restricts to a non-vanishing sectjon over X' (X). We can now put all the
pieces together. The tensor product

W(p, &) = Pfaff ® 91 (x,) ® ¢ (2.4)

(Whereafl(xp) denotes the pullback of the sectigp) is a section oﬁ*l(La(wz) ®Lg, ®
LZ(wz) ® L;Q) and hence is a function o®y(M). In [6] x, is regarded as a kind of

connection (it is theirA-field). Notice that if we change to t subject to requiring that
1(7) = &9 — a(wz) ando € X(M) then we have (using to denote pullback of forms):

W(p, &) (0) = W(z, &) (0)w(t — p)(3%0). (2.5)
2.7. Case 2

The B-field is torsion on restriction t@ but (2.3) does not hold, that is, the difference
betweerc (o), which comes from thé-field, andc(o(w2)) is non-zero.

In this case, in order to cancel the anomaly we need an auxiliary geometric structure. In
[12] Azumaya algebras played this role. Here we use bundle gerbes, bundle gerbe modules
and connections on these to give ingredients that we can feed into the world sheet action to
cancel the anomaly which is essentially

c(§1g) — cla(w2)). (2.6)

We will show inSection 4.lthat any bundle gerbe with connection and curving gives rise
to a Deligne two class. If this Deligne class is torsion the bundle gerbe admits so-called
bundle gerbe modules. K is a connection on a bundle gerbe module for a bundle gerbe
with Deligne class; over a manifoldX then we prove irSection 4.11that the trace of
the holonomy ofA defines a section trh@) of L,, — L(X). This section is an extra
ingredient that may be used in forming world sheet actions.

Kapustin[12] on the other hand considersPdJ(n) bundle P — Q with class¢ e
H?(Q, 7,) and an Azumaya algebra module conneciam P x C". As¢ defines a Deligne
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classitdefines aline bundle: — L(Q). The trace of the holonomy ef is a section of this

line bundle and hence pulls back to give a sectiok(tr hol(A)) of 8*1(L;) — Y(X).The
product of the Pfaffian of the Dirac operator and the pullback of the trace of the holonomy
of A is now a section o&‘l(La(wz) ® L;) and to make this trivial Kapustin assumes that
can be chosen so that

cla(w2)) +c(§) =[H]o,

where [H] € H3(X,Z) is the three-class arising from the Bockstein map applied to the
B-field. It follows that we can trivialise the line bundi,u.,) ® L; ® Lg — L(Q)
(recall thatLg is the line bundle arising from the Deligne cldssr equivalently, from the
B-field).

Choosing ap with ((p) = &|p — ¢ — e(w2) we obtain a non-vanishing sectigf of
L:®L;® L;(wz) We then obtain an action by generalising the construdi2of) to this
situation.

The bundle gerbe version of this is as follows. Start with the torsion al@ss) — &o
on Q. Define¢ to be a(w2) — &p. There is an associated lifting bundle gerbe with
Dixmier—Douady class(¢) = c(a(w2)) — c(§)p) (this is described irBection 4.3. A
bundle gerbe module for this lifting bundle gerbe is judP@(n) bundle P — Q for
some integen (Section 4.9. This is the connection with Kapustin’s approach and we
can proceed by analogy wifli2]. Choose a bundle gerbe module connectioon P.

We will show (Section 4.1} that the trace of the holonomy od is a section of
L — L(Q).

Choosing a stable isomorphismbf, andLq(,) ® L; defines asectiopof L}, ®

L? ® Lg,. The total world sheet action is then

Pfaff ® 07(tr hol(A)) ® ¢ ® 91 (x). (2.7)

Note that in[12] the x dependence of the action is suppressed.

2.8. Case 3

The B-field is not torsion on restriction tQ.

We can proceed as in Case 2 up until we find that the bundle gerbe module for the
lifting bundle gerbe ovelQ has to have fibre an infinite dimensional Hilbert spéte
Connections on such a module take their values in the compact operatdtsaod so
cannot have trace class holonomy. Following Section Rpfve observe that if there are
bundle gerbe connections taking values in the trace class operatHrthen the difference
of the holonomy of two of these (sa44 andA») is trace class. So we fix a reference bundle
gerbe module connectiof; taking values in the trace class operatorstanf A, is any
other trace class operator valued bundle gerbe connection we will Semtign 4.1} that
tr(hol(A1) —hol(A»)) is a well-defined section di; — L(Q). Then the world sheet action
is the function

Pfaff ® 9~ 1[tr(hol(A1) — hol(A2))] ® ¢_= ® 3~ 1(x). (2.8)

In the remainder of this paper we discuss the mathematics behind all these constructions.
We begin with the standard description of Deligne cohomology in terms of double com-
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plexes (hyper-cohomology). We then pass to the description of Deligne cohomology in
terms of differential characters. This has a number of advantages over the double com-
plex point of view. In particular it is a global description not requiring an open cover to
be chosen and moreover it is a precise description in the sense that the differential char-
acter is exactly the Deligne class rather than a representative of it in some cohomology
theory.

3. Deligne cohomology
3.1. Local description

In this subsection we review the definition of Deligne cohomology before considering
the anomaly cancellation argument. We }etbe a general manifold for the purposes of
this discussion noting that in most cases we will specialisg to Q. Recall that for any
positive integey we have the exact sequence of shedvéslefined by

v ol o (3.1)

whereU(1) is the sheaf of smooth functions with valuesliiil) and 27 is the sheaf of
p-forms. We will define Deligne cohomology in terms of the sequeBédelow and use
the notationH” (X, DY) for these groups although we shall be interested in the special case
q = p,thatisH? (X, DP).

LetU = {U,}qcs be a good open cover of, that is every finite intersection of elements
of U is contractible. We realise the disjoint union of all the open sets as

Yy = {(x,0)|x € Ua} (3.2)

and letr : Yy — X be the mapr(x, o) = x. The p-fold fibre product ofY;, with itself,
over the mapr is

Y = {(x, (@1, @2, .. ap)|x € Uy N---NUq,} C X x 1P (3.3)
which is the disjoint union of all the-fold intersectionsUy, N --- N Uq,. We define
projection mapsr; : YL[,”] — YL[{’”_” for eachi = 1,...,p by mi(x, (01,... ,ap) =
(6, (@1, ..., ai-1,ai11, ... ,ap)) and amap : 2" (Y[ — 2 ylF~) py

p
§ = Z(—l)in?‘.
i=1

The spacefZP(YL[,q]) is the usual space gfform valued cocycles and the méays the usual

coboundary map for Cech cohomologywlt QP(YZ[{"]) we Ietwal__ap denote the restriction
of wtoUy, N...N Uq, in the usual way.
To calculate the Deligne cohomology we form the double complex:
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84 8 4 51 8 4

M(yg]) log 2B 4 QZ(YL[?]) 4 .4 ‘Qq(YZElg])

o1 o1 51 51 (3.4)
vy T i) 4 o) 4 4 i

) ) 51 51
U@ (Yu) 4leg Ay S 2y S 04 oy

The real Deligne cohomology is the cohomology of the double com§8%)f which is
calculated by forming the ‘diagonal’ complex

U Y2 U e 22 B uoaf) e 20 e xS - (35)
where the map® are defined recursively by (fare U(1)(Yy))

D(g) = (8(g). dlogg) = (8(g). g ' dg).
D(g, oY) = (8(g), 8(w') — g1 dg, dwb),
D(g, 0t 0?) = (8(g), (oY) + g L dg, §(0?) — dw', dw?).

Standard results in sheaf theory can be applied to show that the cohomology of the complex
(3.5)is independent of the choice of good cover. Similarly we can show thfat X — N
is a smooth map then we have a pull-back map

f*:HP(N,D?) — HP(X,D?)

on Deligne cohomology.
We are interested in the particular case wipea ¢g. Then a Deligne class is determined
by a collection

g ol ..., o) c U e i e ... @ 291y

satisfying D(g, !, ... ,0?%) = 0 oré(g) = 18(hH) = (=17 1g1dg, 8(0w?) =
(=12 2dwl, ..., 8(w?) = dw? L. Note that, from its definition as the cohomology of
a complex, the Deligne class ¢f, »?, ... , w?) is unchanged if we replace it by

(g, ol ... o)+ D, ut, .. /ﬂ_l)
= (g8(h), *+(=D)h rdh+8(uY), 0’ + (=T dut+8(1?), ... , 0 +du?™h
(3.6)
where
(ot evrM e ol e e 2 (). (3.7)
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Denote by f, wl, ... , w?] the Deligne class containing, »l, ... , »?). Associated to a
Deligne clasg = [g, 0, ..., w?]is a p + 1 form dw. It is clear fromEq. (3.7)that this
depends only o&. Moreovers (dw?) = d§(w?) = ddw?~ 1 sothat thisis @+ 1 form defined
globally onX. Denote this form by and call it the § + 1) curvatureof the Deligne class.

Example 3.1. If p = 0 then a Deligne class is a smooth mAp X — U(1) and the
curvature is the one-fornf*(do).

Example 3.2. If p = 1 then a Deligne classcan be represented by an isomorphism class
of line bundle with connection. The curvature of the Deligne class is the curvature of the
connection.

Example 3.3. This is the instance we are mostly concerned with in this paper.=f 2
then a Deligne class can be represented by a stable isomorphism class of a bundle gerbe
with connection and curving as reviewedSection 4.6and originally proved if17]. As
explained in16] and reviewed irSection 4.5 bundle gerbe with connection and curving
gives rise to a three-curvature on the manifédldThe curvature of the Deligne class is
precisely this three-curvature.

The B-field in string theory may be identified with the third componestt)(of a repre-
sentative(g, w!, ?) of a Deligne class itH2(X, D?). The curvature of the Deligne class
is called theH-field in string theory.

3.2. Holonomy of a Deligne class

Associated to any Deligne class
£=[g o ..., 0"

is a cohomology classé) = [g] in H?T1(X, Z). The image of:(¢) in real cohomology is
the class of1/2ni) F¢. Let us call the Deligne clagstrivial if the Chern clasg () is zero.
Note this is not the same as the Deligne class being zepos I£27 (X) then we can restrict
it to each open set or equivalently pull it backiipand hence determine a foei(p). This
determines a Deligng classi(p) = [1, 0, ... , 0, #*(p)] which is clearly trivial. Hence we
have a sequence of maps

QP(X)5 HP (X, DPYSHPTLY(X, 7)

with cot = 0. Let$2” (X)(.,0) denote the subset ptforms which are closed and whose class
in H? (X, R) is the image of a class froi? (X, 2xiZ). Then there is an exact sequence

0— 27(X) .0 — 2P(X)—>HP(X, D)5 HPL(X, 7) — 0. (3.8)

Assume thatX is p-dimensional so that/?*1(X, Z) = 0. Then every Deligne clagsis
trivial so & = «(p) for some formp on X and, assuming thaf is oriented, we can define

hol(¢, X) = exp/ 0.
X
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If we choose anothes’” with ((p") = & then
/ (p—p') € 27iZ,
X

so that holé, X) is independent of the choice pf Notice thatF; = dp so if X is the
boundary of gp + 1-dimensional manifold then we have

hol(¢, X) = exp[ 0, (3.9)
)4

= exp/ Fr (3.10)
Y

whereX = dY has the induced orientation.
More generally ifX is not necessarilyp-dimensional, we can consider a map X7 —
X, whereX? is p-dimensional and compact and define

hol(§, ) = hol(y* (&), Z7).

Similarly if X?*1 is a p-dimensional oriented manifold with boundadyx?*! = 7, a
p-dimensional manifold, and : X?*1 — X we have

hol(&, ay) = exp < / y*(Fs)> ,
xp+1
wheredy : X — X is the restriction of to the boundary.

Example 3.4. If p = 0 then a Deligne class is a smooth mAgp X — U(1) and the
one-form associated to the clasgigdd). The holonomy of the smooth map is over a point
p and is just the evaluation gf at p.

Example 3.5. If p = 1 then a Deligne class can be represented by an isomorphism class
of line bundle with connection. The holonomy is the classical holonomy of a connection.

Example 3.6. If p = 2 then a Deligne class can be represented by a stable isomorphism
class of a bundle gerbe with connection and curving. The holonomy is the holonomy of a
connection and curving defined [ib6] and reviewed irBection 4.6

Using (3.9) we can define the gluing property of holonomy. Lgtfori = 1, 2, 3 be
manifolds of dimensiop related as follows. Assume we have open ggts X;fori =1, 2
such that¥; — U; andU; are manifolds with (common) boundary. Moreover assume we
have an orientation reversing diffeomorphigm U; — U, of manifolds with boundary
sothatdg : 3(X1 — U1) — 9(X2 — U?) is a diffeomorphism. Finally assume thgg is the
manifold constructed by usingp to glue togethe’; — U1 and X, — U,. Consider now
a pair of mapsy; : X; — X such thatys|y, o ¢ = y1|y,. Then there is an induced map
fi#f2 :» X3 — X. This map may not be smooth on the common boundary ofthe U;
but we can still define its holonomy. Then we have the following proposition.
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Proposition 3.7 (Holonomy gluing property).In the situation above
hol(&, y1#y2) = hol(§, y1) hol(§, y2).
Proof. Using the definition of holonomy as an integral it is easy to see that

hol(&, y1#y2) = hol(§, y1l(z,—uy)) hOl(E, y2l(z1-v)
= hol(&, y1l(zy—vy)) hOl&, y1luy) NOIE, yiluy)~ hOE, y2l(51-us))
= hol(§, y1l(z,-uvy)) hOI(E, yilu,) hol(E, y2lu,) hOl(E, y2l(51-u2)
= hol(&, y1) hol(&, y2).

Here we use the fact thatis orientation reversing to deduce that
hol(&, y1lu;) ™t = hol(, y2lu,). O

A remark may help the reader to visualise the gluing here when2. Imagine that’;
and X» are two balloons that are pressed together so they touch on an opdh disk/».
Cutoutthe region where the balloons meet and we obtain the suEfatle are suppressing
mention here of the inclusion mag$ and f» of the surfaces int& = R3. Notice that it
would be easier to state ti¢®.1) as the holonomy of/; times the holonomy oveE; — U
equals the holonomy over; but we cannot as holonomy is only defined for closed surfaces.

3.3. Local formulae

To compare with the calculations [B] it is useful to have a local formulation of the
holonomy. We will restrict attention to a Deligne two class although a general formula is
possible. Formulae of this type have appeared previously in the work of Gaw&d2ki
Brylinski [3], and Kapustif12] for Deligne classes of arbitrary degree[iD]. In these
applications the formulae were used to define the holonomy, here we have an intrinsic
definition and we will derive the local formula. The case of a Deligne class of arbitrary
degree is irf19].

Consider then a Deligne two class= [g, k, B] relative to an open covdl/,} of X. We
pull this class back to a surface without boundary via a map : ¥ — X and obtain the
classo*(&) = [0*(g), o*(k), o*(B)] relative to the open coveo—1(U,)} of X. As ¥ is
two-dimensional this class is trivial and we have

" (8apy) = hpyhiyhap,
and we can findz, such that
0" (kap) + hoy dhog = mp — mq.

If follows that o*(B); — dm, is a globally defined two-form the exponential of whose
integral overX is the holonomy.

Assume now that we have a triangulationXfinto faces, edges and vertices which is
subordinate to the open cover—1(U,)}. That is the closure of each face is in (at least



198 A.L. Carey et al./Journal of Geometry and Physics 52 (2004) 186-216

one) open set. For each fagewe choose a particular open setl(Up(f)) such that
fcC cr*l(Up(f)). Similarly for each edge and vertexv. Then we have

hol(Z, & =[] EXp< /f 0" (Bp(f)) — dmp(f)) 7
!

where we orient each face with the orientation it inherits frBmUsing Stoke’s theorem

this becomes
hol(X, &) = l_[exp</ O’*(Bp(f))> l_[ exp(— /mp(f)> s
f ! ecf ¢

where the second product is over all pdis f) consisting of an edge contained in a face.
In the integral the edge is oriented by the face. For agairf we have

-1
—mp(p) = —Mp(e) + 0" kp(pote) + hp(f)p(e)dhp(f)p(e)~
Notice that
Z ~Mp(e)
ecfe

vanishes as every edge occurs in exactly two faces and with opposite orientations. We use
here the fact thak’ is a manifold without boundary. Hence we have, again using Stoke’s
theorem, that

hol(X, &) = l_[exp</f 6*(Bp(f))>
f

For atriplev C e C f we have

l_[exp( / U*(kpmp(e))> [T ropro®.

eCf vCeCf

-1
hp(poe) () = 0™(&p(fp(e)p) W p( 1)) VIR 50y o) (V)

and substituting again and observing that the remaihitegms cancel we obtain
hol(Z. & =] [ exp (/f a*(B,,(,))>
f J

<[] eXp( / 0*(kp(f>p<e))> [T o Gopo@rw ). (3.11)

eCf vCeC f

3.4. Differential characters

We have seen that we can construct from a Deligne cohomology &lafsdegreep a
holonomy operation and a curvature foffawhich satisfy holonomy gluingRroposition
3.7)andtherelationiiq. (3.9) In an appropriate sense these two data determine the Deligne
cohomology class exactly. The appropriate sense is the thedifferential charactersA
differential charactef3,4] is a pair(h, F), whereh is a homomorphism fronz ,(X), the
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group of all smooth, closeg chains (cycles) irX, to U(1) andF is ap + 1 form. These
two are required to be related by

h(ow) = exp</ F)
"

for any p + 1 chainu (cf. (3.9)). The homomorphism condition dncan be interpreted
as the holonomy gluing condition. The set of all such differential characters is denoted by
HP (X, U(L)).

Our construction of holonomy and curvature of a Deligne class has esséntiefiged
a mapH?(X,DP) — HP(X,U(1)) and it is a result of4] that these two spaces are, in
fact, isomorphic. In the remainder of this paper we shall work primarily with differential
characters as our representation for Deligne cohomology. Because of this isomorphism we
can reinterpret various maps we have defined for Deligne cohomology in terms of differ-
ential characters. First notice that the curvature of a differential chaetet:, F) is, of
course,F.

Secondly the map

L 2P(X) »> HP(X,U(D)

is defined as follows. Lefk, : Z,(X) — U(1) be defined by:,(0) = exp(fg p) for any
p € £2P(X). This is a homomorphism and we i&p) = (h,, dp).
Thirdly there is an induced map. HP(X,U(1)) — HP(X, Z).We follow the discussion
in [3]. Let C,(X) be the group of all chains. Results from group theory imply that there is
a mapfl : Cp(X) — R such that:(o) = exp(fz(a)) for anyo € C,(X). Then

/ F — h(3w) € 27iZ
"

foranypu € Cpr1(X). Lett(u) = (1/2”i)(fu F— iz(au)) and notice thad*(r) = 0 so

that [r] € HPL(X, Z). It is straightforward to check that changing the choicé: afoes
not change the class of][and we define(k, F) = [1].

Our preference for differential characters is due to their mathematical simplicity and a be-
lief that they are generally the observable quantitie®ibrane physics. However there are
many situations where we want to work with geometric objects which determine a Deligne
class rather than with representatives of the Deligne classes or of the differential characters
themselves. For anythere are a number of such geometric objects, for example fo2,
the case of interest in this note, there are gerbes, bundle gerbes, local gerbes in the sense of
Hitchin, Z bundle two gerbes a5 bundles in the sense of Gaj&f. All of these, when en-
dowed with appropriate notions of connection and curvature, determine degree two Deligne
classes and differential characters. While we have a bias towards bundle gerbes (evident later
in this article) the formalism fob-branes incorporates additional structure beyond what we

1 This is not completely true as we have defined holonomy only over cycles which arise as the images of maps
of triangulated manifolds. We will ignore this issue for the remainder of the discussion as it does not affect what
we are doing.
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have described here. It is conceivable that one of these geometric realisations will be prefer-
able when this additional structure is taken into account, however our point here is that since
we can formulate the discussion in terms of Deligne characters, and all the geometric reali-
sations lead to these, our account is independent of whatever geometric realisation is chosen.

It is not clear which physical applications can motivate a preference for one of these ge-
ometric realisations over another. We will not attempt to comment further on this question
here.

3.5. Deligne class of a torsion cohomology class

Recall that the short exact sequence of groups

727 7,

induces the Bockstein map: H? (X, Zq) — HPTL(X, Z). We will show that there is a
mapn : H?(X, Z4) — HP (X, DP) such that o n = 8.

Letk € HP(X, Zy). Choose a representatives «. Thenr is a homomorphism from
CP?(X), the group of allp chains, intdZ,;. We can restrict this to obtain a homomorphism
fromZ,(X)intoZ,. If we choose another representatitef « then(r—r') = 9*(s) forsome
s € Cp_1(X) sothatifo is a closep chainthenr, o) — (', o) = (r—r', o) = (3*(s), 0) =
(s, 3(0)) = 0. So we have a well-defined homomorphism: Z,(X) — Zq C UQQ). If
o = d(7) thenh, (o) = (r, d(v)) = (3*(r), T) = 0. Hence the pai(h,, 0), where 0 is the
zero(p + 1)-form defines a Deligne cohomology class we denote(wy. In terms of Cech
representatives relative to an open cover we can repressitheZ,; c U(1) valued cocycle
i, forwhichdki,, .. ;, = 0sothat)(k) = (... i,» O, ... , 0) defines a Deligne class.
It is straightforward to check thatn(x)) = B(«x) the image of under the Bockstein map.

yees

3.6. Line bundles on loop space

Let X be a manifold of dimensiom andS a compact manifold of dimensign Consider
the evaluation map

ev:S x Map(s, X) - X.

If pis a differential- + 1 form onX then we can integrate its pull-back under ev to obtain
anr — p + 1 form ev.(p) on Map(S, X) called thetransgressiorof p. This transgression
operation can be extended to act on differential characters, and hence Deligne cohomology
as follows. Let(k, F) be a differential character with : Z,(X) — U(1) andF anr + 1

form. Clearly we can transgre#sto anr + p — 1 form on Mag$, X). Leto € Z,_,(S) and
choose a clasg representing the generator Bf,(S, Z) = Z. Then ey(c x u) € Z,(X)

and we can apply. The resultis a maf,_ ,(Map(S, X)) — U(1) the transgression . It

is, in fact, independent of the choice of representatiaand together with the transgression

of F satisfies the conditions for a differential character. It is also possible to transgress a
Cech representative for a Deligne class but the result is quite complicated and we refer the
reader td10] for details.
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We concentrate now on the case that S and hence Ma(s, X) is the loop spacé (X)
of all smooth maps of the circle int®. In this case the transgression of a Deligne two class
& is a Deligne one class an(X) and hence it defines an isomorphism class of a line bundle
and connection. We now give a geometric construction of this line bundle and connection.
For convenience we assume thais simply connected and € be a disk withD(X) the
space of maps ab into X. Let D(X)!@ be pairs of maps; : D — X andoy : D — X
which agree on the boundary circle, thavigsp = o23p. Each such pair defines a map
from the two sphere (thought of as the union of two copies of the diskinenote this
map byoi#o, and orient it by the first factor.

Let (k, F) be the differential character of a Deligne two clgs8Ve define a line bundle
Ls — L(X) whose fibre over a circlg : s — X is equivalence classes of paiis z)
with d(c) = y andz € C and equivalence relatio, z) >~ (o’, ) if

h(c#o)z =7 .
This means that a section bt is a functions : D(X) — C such that
s(0) = h(o#a)s(d)). (3.12)

We think of this as a transformation rule just as tensor, spinor and gauge fields satisfy
transformation rules for the Spin, Lorentz and gauge groups. In the case of sections of
there is no group but the philosophy is the same. Notice that this point of view has the
advantage that sections are actually just functions, albeit on a larger space. In particular if
h = 1 then the section transforms &%) = s(¢’) and hence defines a function a11X).

The line bundleL; — L(X) has a natural connection which we have no need in this
paper to describe. Note however thapif ST — L(X) is a loop then it defines naturally a
mapy : ST x 1 — X and the holonomy of the connection fgp aroundy is k(y). It can
be shown that the Deligne class of this line bundle with connection is the transgression of
the Deligne two class oX.

3.7. Sections of the line bundle on loop space

In the construction of the world sheet action we need two basic sectidiis-ef L(X)
and its pull-back ta¥'(X) for a Deligne two clasg on X. We first define these and then
recall how they are used in Case 1.

Consider first

d:: Z(X) — 7N (Le).

A section ofthe line bUﬂd'&_l(Lg) — X(X)atapoinb e X(X)isafunctiorns : D(X)x s
X(X) — C satisfyings(o, v) = h(o#o')s(o’, v), where elements ab(X) x r X(X) are
pairs(o, v) € D(X) x X(X) such that(c) = d(v) and hencé(o) = 3(c”’). In particular,
that the pulIbacIG*l(Lg) has a canonical section defined by

¢z(0,v) = h(oth). (3.13)
It follows from the holonomy gluing property that

Pe(o, v) = h(o#y) = h(c#o ) h(c'#v) = h(o#o/)d)g(a’, V),
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so thatg: (o, v) is indeed a section Wl(Lg) — X(X).

When we form an action out of tensors, spinors and gauge fields we must combine them so
the resulting action transforms as a scalar. So too with world sheet actions. We must combine
various sections of various bundles so that the final action transforsis,ag = s(¢’, v)
and hence defines a functionaf

Notice that if¢ and¢’ are two Deligne classes théghy = he, ¢ . So if we multiply a
section ofL; and a section oL then it automatically transforms as a section’gf ¢ .

This means we have canonicaf isomorphisms

Ls ® Ls/ — L§+g’;/.
The other section used in the construction of the world sheet action is
Xp - L(X) —> Lg,

defined for ap with ((p) = &£. To see how to define this we note that wheén) = & the
holonomy and curvature gfare given by

hup)(0) = eXp(/ p>, (3.14)
F, ) = dp. (3.15)

Note that expfg p) and o are unchanged if we add an integral, closed form,tso as we
expect depend only arfp) = & not onp. The sectiory, of L, is defined by

Xp(0) = eXp(/ U*(p)> ,
D

and it is easy to check that this satisfiggo) = h,(,) (otto”) x,,(0”) as required for a section
of L,(p). If we changep to p + u, wherep is a closed two-form whose integral over any
closed surface iss2 times an integer then

Xpin (@) = EXP ( fD o m)) 1(@. (3.16)

Recall how we apply these constructions to Case 1. We have the diggrBm

M S LM
u ' U (3.17)
o) & L(Q)

and we want to define a function dfip (M). The ingredients are a Deligne two clags (
field) £ on M and the (torsion) Steifel-Whitney class € H?(Q, Z,) which together
satisfy(2.3)

c(€)0) = c(a(wy)),
and the section

Pfaff : $o(M) = 0 (La(wy)
defined in(2.2).
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First we apply the above constructions to get : 2(M) — d~1(L_¢) and restrict this
to X o (M) to get (by abuse of notation)

¢_g Zo(M) = 3 HL_) sy

Secondly, becaus€ o —a(w2)) = 0 we can choose € £22(Q) suchthat(p) = c&o) =
c(a(w2)). Hence, applying the discussion above but replagiigy O, we obtain a section
Xp  L(Q) > L ® Lj;t(wz) and hence can pull this back to obtain a section

M (xp) 1 Zo(M) = 07 H(Le) ® 0 (Laqun)™
Combining these three sections we see (B&)

W(p, &) = Pfaff ® 7 (x,) ® ¢,

transforms in such a way that it is a function & (M) which is the world sheet action.

4. A geometric interpretation

In this section we are interested in Cases 2 and Seaftion 2that is, generaB-fields.
We will use bundle gerbes to give a geometric interpretation of the Deligne character,
transgression and the anomaly cancellation argument.

4.1. Bundle gerbes

Before defining bundle gerbes over a manif&ldecall thatifr : ¥ — X is a submersion
(i.e. onto with onto differential) thei can be covered by open séfs such that there are
sectionss, : U, — X of w, that ism o 5, = 1. A fibration is a submersion but not
all submersions maps are fibrations. For example we can use the disjoint Xgnhimfna
given coverl/ as defined in(3.2). The sections are the magg : U, — Y, defined by
Se(x) = (x, @).

Recall that a bundle gerbever X is a pair(L, Y), wherer : ¥ — X is a submersion
andL is a hermitian line bundi@ — Y2 with a product, that is, a hermitian isomorphism

L(y1,y2) ® L(y2.y5) = L(y1.y9)

for every(y1, y2) and(y», y3) in Y121, We require the product to be smoothyin y, andys

but in the interests of brevity we will not state the various definitions needed to make this
requirement precise, they can be foundif]. The product is required to be associative
whenever triple products are defined. Also[i8] it is shown that the existence of the
product and the associativity imply isomorphisig ) ~ C andLy,,y,) >~ L’(“yz’yl).
If (L, Y)is abundle gerbe we can define a new bundle g€ilie,Y), the dual of(L, Y),

by taking the dual of.. Alsoif (L, Y) and(J, Z) are two bundle gerbes we can define their

2 strictly speaking what we are about to define should be called a hermitian bundle gerbe but the extra terminology
is overly burdensome.
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product(L ® J, Y x, Z), whereY x, Z = {(y, 2) : ny(y) = mz(z)} is the fibre product of
Y andZ over their projection maps.

A morphism from a bundle gerlié,, ¥) to abundle gerbeJ, Z) consists of a pair of maps
(g, ), wheref : Y — Zis a map commuting with the projectionandg : L — Jisa
bundle map covering the induced mal! : Y2 — Z[2 and commuting with the bundle
gerbe products odl andL respectively. Iff andg are isomorphisms then we call, /) a
bundle gerbe isomorphism.

If J is a (hermitian) line bundle over then we can define a bundle gerbg) by
8(J) = 717 () ® 7, H(I)*, thatiS8(J) (yy.y0) = Jy, @ T3, wherer; : Y2 — v is the map
which omits theth element. The bundle gerbe product is induced by the natural pairing

Jyz ® J;fl ® Jya ® J;z - Jy3 ® J;l'
A bundle gerbe which is isomorphic to a bundle gerbe of the féx is calledtrivial. A
choice ofJ and a bundle gerbe isomorphis$ity) ~ L is called arivialisation. If J andK
are trivialisations ofP then we have natural isomorphisms

Jy ® J5, ~ Ky, ® K,

and hence
T5 @Ky >~ T, ® Ky,

so that the bundl¢ ® K is the pull-back of a hermitian line bundle &h Moreover ifJ is a
trivialisation andL is a bundle orX thenJ ® =—1(L) is also a trivialisation. Hence the set
of all trivialisations of a given bundle gerbe is naturally acted on by the set of all hermitian
line bundles orx.

One can think of bundle gerbes as one stage in a hierarchy of objects with each type of
object having a characteristic classHit (X, Z). For example ifp = 1 we have maps from
X to U(1), the characteristic class is the pull-back of@henp = 2 we have hermitian line
bundles onX with characteristic class the Chern class. Wpea 3 we have bundle gerbes
and they have a characteristic clagé. = d(L,Y) € H3(X, Z), the Dixmier-Douady
class of(L, Y). The Dixmier—Douady class is the obstruction to the bundle gerbe being
trivial. In [16] the following theorem is proved.

Theorem 4.1. A bundle gerbé&L, Y) has zero Dixmier—Douady class precisely when it is
trivial .

From[16] we also have the following proposition.

Proposition 4.2. If L and J are bundle gerbes over X then

(1) d(L*) = —d(L),
(2) dL ® J) =d(L) + d(J).

We note finally that bundle gerbes behave nicely under pull-bagl.,If) is a bundle
gerbe oveX and f : N — X then we can pull-back and hencd. to form a bundle gerbe
(f~H(L), f7H(Y)) overN. We have df (L), f~H(¥)) = f*(d(L, V).
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4.2. Torsion bundle gerbes

The definitions of bundle gerbe, triviality and the Dixmier—Douady class can be immedi-
ately generalised witti(1) replaced by any abelian grodpexcept that the Dixmier—Douady
class lives in2(X, A). In particular we can consider bundle gerbes for any cyclic subgroup
Zq4 C U(1). The Dixmier—Douady class then lives Hf (X, Z,) and we call these torsion
bundle gerbes df; bundle gerbes.

It is natural to think of a torsion bundle gerbe aZa subbundle of thé/(1) bundle
L — Y[? which is stable under multiplication. Thg(1) bundle gerbe has Dixmier—
Douady class inH3(X, Z) which is the Bockstein of the torsion bundle gerbe class in
H?(X,Z4). Notice that there are two different notions of triviality for torsion bundle
gerbes, the first is the vanishing of the classHA(X, Z,) or torsion bundle gerbe triv-
iality and the second is the vanishing of the associdi&d) bundle gerbe or the
vanishing of the class inH3(X,Z). The former implies the latter but not vice
versa.

Standard results in topology tell us that every clasg %X, Z) which is torsion arises as
the Bockstein of a class in sorfig. Hence every bundle gerbe with torsion Dixmier—Douady
class is stably isomorphic to a torsion bundle gerbe.

4.3. Lifting bundle gerbes
A common example of bundle gerbes is the so-cdlféidg bundle gerbelLet

Ul — GG (4.1)

be a central extension of Lie groups andfet> X be a principalG bundle. Then there is
amapg : P4 — G defined byp1g(p1, p2) = p». We can consider the central extension

as aU(1) bundle overG and pull it back byg to aU(1) bundle overP[2. The fibre over

(p1, p2) is the set of alg in G such thatp17(2) = p. The product structure o defines

a bundle gerbe product. The resulting bundle gerbe is called the lifting bundle gerbe of
P — X.

Given the bundle? — X it is natural to ask if there is & bundle ? — X such that
P/U(1) is isomorphic toP as aG bundle. It is well known that this is true if and only if a
certain class irH3(X, Z) vanishes. It is also easy to sh¢#6] that such a lift is possible if
and only if the lifting bundle gerbe is trivial. Moreover the class of the lifting bundle gerbe
is the three class obstructing the lift.

The examples we need in this paper are torsion bundle gerbes. For these the central
extension is of the form

Zq — G>G (4.2)

for some cyclic subgrou; C U(1). In this case the obstruction to lifting ti@bundle to
a G bundle lives inH2(X, Z,) and again corresponds with the Dixmier—Douady class of
the torsion bundle gerbe.
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4.4, Stable isomorphism of bundle gerbes

For bundle gerbes there is a notion cakable isomorphisiwhich corresponds exactly
to two bundle gerbes having the same Dixmier—Douady class. To motivate this consider the
case of two hermitian line bundlds — X andJ — X they are isomorphic if there is a
bijective mapL — J preserving all structure, i.e. the projectionsit@nd thel/(1) action
on the fibres. Such isomorphisms are exactly the same thing as trivialisatidrisgf/.
For the case of bundle gerbes the latter is the correct notion and we have the following
definition.

Definition 4.3. A stable isomorphism between bundle gerflesY) and(J, Z) is a trivial-
isation of L* @ J.

We have fron{17] the following proposition.

Proposition 4.4. A stable isomorphism exists frofh, Y) to (J, Z) if and only ifd(L) =
d(J).

If a stable isomorphism exists frod, Y) to (J, Z) we say that(L, Y) and(J, Z) are
stably isomorphic.

It follows easily that stable isomorphism is an equivalence relation. It was shdjd]in
that every class it3(X, Z) is the Dixmier—Douady class of some bundle gerbe. Hence we
can deduce frorProposition 4.4he following theorem.

Theorem 4.5. The Dixmier—Douady class defines a bijection between stable isomorphism
classes of bundle gerbes artf (X, 7).

It is shown in[17] that a morphism froniL, Y) to (J, Z) induces a stable isomorphism
but the converse is not true.

4.5. Bundle gerbe connections and curving

Let (L, Y) be a bundle gerbe ovér. Before defining connections we need a useful long
exactsequence frofh6]. LetY!?l — X be thepth fold fibre product of’ over the projection
map toX. ThatisY!?) is the subset of ” consisting of pairgys, . . . , yp) with the property
thatr(y1) = n(y2) = --- = n(y,). There are projection maps : Y71 — ylr=1 which
omit theith component. We use these to define a map on differential forms

s eylr-1ly 5 acylrly (4.3)

by

p
5() =Y _(=D'r* ().
i=1
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Note thats commutes with exterior derivative. It is shown[it6] that the long sequence
0— 215 Qi@ o yBhl (4.4)

is exact for every;.

A connectionv on L — Y is called a bundle gerbe connection if it commutes with the
product structure oh. To be more precise, ov&F], the bundle gerbe multiplication defines
abundle isomorphism : 731 (L) @ 77 H(L) — 7, *(L). Onthe bundler; *(L) @ 7 H(L)
we have the connectiomgl(V) ® nl_l(V) and onnz_l(L) the connectiomz_l(V). We
require that these are equal under the isomorphisrit can be showrj16] that bundle
gerbe connections exist. The curvature of a bundle gerbe conndgtieatisfiess(Fy) =
0, wheres is defined in(4.3). Using the exactness ¢f.4)we see that there is a (not unique)
two-form f on Y satisfyingd(f) = F. A choice of such ary we call acurving for the
bundle gerbe connection. In string theory we would refef &s theB-field. We have that
8(df) = ds(f) = dF = 0 so, using exactness agairy, & 7*(w) for some three-fornm
on X. As 7*(dw) = d7*(w) = ddf = 0 we see thatd = 0. The three-formw is called
the three-curvature of the bundle gerbe connection and curving. In string theory it is the
H-field. As for line bundles the three-curvature represents the image, in real cohomology,
of the Dixmier—Douady class.

We can extend the notion of stable isomorphism to bundle gerbes with connection and
curving by saying that a bundle gerfg, Y) with connectionv and curvingyf is trivial if
there is aline bundlé — Y with connectioriv; and a bundle gerbe isomorphigity) = L
which mapss(V;) to V and for whichf = Fy,. Then two bundle gerbes with connection
and curving(L, Y) and (K, X) are stably isomorphic if{L ® J*,Y x s X) is trivial, as a
bundle gerbe with connection and curving. Then we have the following theorem.

Theorem 4.6 ([17]). The set of all stable isomorphism classes of bundle gerbes with con-
nection and curving is equal to the Deligne cohomoléti(X, D3).

4.6. Deligne cohomology of a bundle gerbe with connection and curving

An explicit map to Deligne cohomology can be defined as follows.{Ligt be a good
open cover ofX admitting local sections, : U, — X. We can define a map: Y, — Y,
commuting with projections t&, by s(c, x) = s, (x). This induces maps?! : YL[{”] — yln
which can be used to pull-back the line bundle> Y!”! to a line bundlest?)~1(L) —
Yz[f]. As the pairwise intersections are contractible we can trivialise the line bundle by
sectionsy,g over eachl/, N Ug. Then we can multiply,g andog, using the bundle gerbe
product. OverU, N Ug N U, we must haver,gog, = gqs,08, for some functiong,g,
which is, in fact, a Cech cocycle. Also defihgs € 21(U, N Ug) by Voug = kepoes and
fu € 22(Uy) by fy = s%( . In string theory this is how th8-field is usually presented as
a collection of two-forms. The triplegls, , kog, fo] defines a Deligne cohomology class.
The curvature of this Deligne class is the three-curvature of the bundle gerbe connection
and curving.

It follows that every bundle gerbe connection and curving defines a holonomy, that is an
number inU(1) assigned to any surface K. To define this explicitly consider a bundle
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gerbe with connection and curving over a surfacérhen as{3(X, Z) = 0 this is a trivial
bundle gerbe with a trivialisatiosi — Y. It can be showl(iL 7] that we can find a connection
V; onJ such thats(V;) = V. We say such a connection is compatible with the bundle
gerbe connection. TheltFy, — f) = 0 so thatFy, — f = u; for some two-formu; on

X. Define

hol(V, f, %) = exp(/ m) .
b

We leave it as an exercise to confirm that this is the same as the holonomy of the Deligne
class constructed as Bection 3.Zrom the bundle gerbe with connection and curving. As
for the case of Deligne cohomology we often also compute holonomy of amap— X
by first pulling the bundle gerbe with its connection and curving back.to

As the bundld. — Y@ for a torsion bundle gerbe has a reductiodt has a canonical
flat connection. Because the curvature of the flat connection vanishes the zero two-form on
is a curving. The flat connection and zero curving provide a canonical choice of connection
and curving for any torsion bundle gerbe. We leave it as an exercise for the reader to show
that the Deligne cohomology class defined by the flat connection and zero curving is the
canonical Deligne cohomology class of a clas$/f( X, Z,) defined inSection 3.5

4.7. Local bundle gerbes

If U = {U,}a.er is an open cover aX and we defingy, as in(3.2)a bundle gerbéL, Y,)
is just a collection of line bundles,s — U, N Ug. This is a gerbe in the sense of Hitchin
and Chatterjee. If we restrict further and require that the cover be good we can assume all
the L4 are trivial. In that case bundle gerbe multiplication must take the form

((er, x), w) @ ((B, x), 2) = (¥ %), Gapy (X)WZ)

for some co-cycles, : Uy, N Ug U U, — U(1) and, moreover, a connection and curving
define exactly a representative for a Deligne cohomology class in the double cdfgex

The local description of bundle gerbes follows from these results. Choose a good cover
U and local sections, : U, — Y. Then these define a map Y;; — Y by s, x) = s4(x)
which is fibre preserving. We can use this to pull-back the bundle gérpE) to a stably
isomorphic bundle gerb@~1(L), ¥;;) and calculate locally.

4.8. Stable isomorphism and gauge transformations

In the case of abelian gauge theory we are interestéd 1n bundles with connection
and curving and these determine a Deligne one class. If we act on the bundle with a gauge
transformation then the Deligne class is unchanged. The converse is also true. To see this
let L be a bundle with connections; and A3 defining the same Deligne class. Pick a point
mg € X. For any other pointz choose a patly from m to m’ and consider the parallel
transportsPy(y) and P2(y) from L,,, to L,,. These define an isomorphism

PP L Ly — L.
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If we choose another patk then we have
Pi(y") = Pi(y) hol(y#y', A)
but hol(y#y’, A1) = hol(y#y’, A) so that

P Pi(y) "t = P(Y)PL(y) 7L,

and the result is a gauge transformationZ. — L. Clearly this maps the parallel transport
for A; to the parallel transport fot> and hence maps; to A>. We conclude that any two
connections with the same Deligne class differ by a gauge transformation.

For bundle gerbes we know that any two bundle gerbes with the same Deligne class differ
by a stable isomorphism with connection. Any two stable isomorphisms differ by a uniquely
determined line bundle with connection in the sense that# Y andK — Y are stable
isomorphisms then there is line bundle— X such that/ = 7~1(L) ® K. In additionL
has a connection and the isomorphigm: 7~1(L) ® K identifies the connection ahwith
the product of the pull-back connection sn'(L) and the connection oki. Note that it is
possible to compose stable isomorphisms but the composition is not assddiajR#]

In the case of stable isomorphisms from a bundle gémhé) to itself the situation is
somewhat simplified as we have a distinguished stable isomorphism—the identity. It follows
that every stable isomorphism frof®, Y) to (P, Y) is determined by a line bundleon X
with connectiorv. We conclude that a gauge transformation of a bundle gdrb¥®) with
connectionV and curvingf is a line bundle/ — X with connectionD. Some calculation
shows that it defines a stable isomorphism betwdery) with V and f and(L, Y) with
V and f + #*(Fp), whereFp is the curvature of the connectidnon J — X. If we take
local sections and represent the Deligne clas€loft) with V and f by (gugy da, fup)
then the stable isomorphism changes it by additio®¢%.s, Ay) = (1,0, dA,), where
kqp are transition functions faf andA,, are local connection one-forms far.

Note Hitchin has remarked (Arbeitstagung lecture, Max Planck Institute, Bonn, 2001)
that gauge transformations for gerbes form a category, they are certainly not a group.

4.9. Trivial bundle gerbes

Consider a bundle gerbe with connection and curving and Deligneilésise Dixmier—
Douady classd(£€)) is zero then the bundle gerbe is trivial and we can repeat the discussion
in the definition of holonomy irBection 4.6and find a global trivialisatiod — Y with
connectiorv,. The two-formu  is then a two-form orX . If we compare with the sequence
(3.8)we can show that(u ;) = & the Deligne class of the bundle gerbe. AsSSiection 3.7
we can useg; to define a sectiof,,, of Lg over L(X).

If we change to another trivialisatioH and connectiov’ then there is a bundlg — X
with connectiorVg suchthatt’ = J7~1(K), V) = V; @7 1(Vk)anduy = wy+ Fk,
whereFk is the curvature oVg. Then we have (cf(3.16)

Xuy (@) = hol(Vk, 3(0)) x,., (0).

Notice thatthe action of a gauge transformation is precisely that of tensoring the trivialisation
J and its connectio¥; with the pull-back of a line bundl& — X with connectiorivg. It
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follows that the change in the acti¢®.5)arising from changing the trivialisatior, can be
regarded as resulting from a gauge transformation acting on the trivialisation. To be precise
the gauge transformatidik, Vi) acting results in the value of the action on a world sheet

o being multiplied by

exp(f U*(FK)> ,
b

whereFk is the curvature oVg.
4.10. Bundle gerbe modules
Let(L, Y) be a bundle gerbe over a manifotdand letE — Y be a finite rank, hermitian

vector bundle. Assume that there is a hermitian bundle isomorphism

¢: L ESnytE (4.5)
which is compatible with the bundle gerbe multiplication in the sense that the two maps

Ly1.y2) ® (L(yz.y5) ® Ey3) = L(y1.yp) @ Ey, = Eyys
and

(L(y1.y2) ® L(y,y3) ® Eyg3 = Lyy,y3) ® Eyg = Ey,

are the same. In such a case we &a#l bundle gerbe module and say that the bundle gerbe
acts onk.

Notice that ifE has rank one then it is a trivialisation bf Moreover ifE has rank- then
L" acts onA"(E) and we deduce the following proposition.

Proposition 4.7. If (L, Y) has a bundle gerbe module— E of rank r then its Dixmier—
Douady classl(L) satisfies rdL) = 0.

A connectionVg is called a bundle gerbe module connection if the bundle gerbe has
a connection and the induced connectionsL.o® nl_lE and nz‘lE are equal under the
isomorphism(4.5).

If the bundle gerbe arises as the lifting bundle gerbe associated to a priGcipaidle
P — X, where there is a central extension

ul) —» G — G,

it follows from the definition of bundle gerbe module they are the same thing as bundles
E — P with G action covering th& action onP and such that the action 6f(1) on any
fibre E, over p € P is scalar multiplication. For example in the case of

Zn, — SUn) — PU(n),

the trivial bundleV x P is a bundle gerbe module whenevércarries a representation of
SUn).
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4.11. Holonomy of bundle gerbe modules

We show in this subsection how, given a bundle gerbe module over a manifold, the
holonomy of a connection on a bundle gerbe module defines a section of the line bundle
(defined inSection 3.§ over the loop space of the manifold. Although the result is general
our applications are when the manifold in question is the submaniodd inSection 2
Our construction is motivated by the constructiorji] using Azumaya algebra module
connections.

Consider a bundle gerli&, Y) over Q with a connection and curving defining a torsion
Deligne clasg. The example we need Bection 2is the lifting bundle gerbe for RU(n)
principal bundle ovep. Let E — Y be a bundle gerbe module with a bundle gerbe module
connectionA. We wish to define a section trh@l) of L, — L(Q) by constructing a
functions, : D(Q) — C and showing that it transforms as(®.12)

Leto : D — Q be a map of a disk int@ and pull the bundle gerbe and connection
and module back t®. Over D the bundle gerbe is trivial. Choose a trivialisatidmwith
connectionv; compatible with the bundle gerbe connection and with curvakyterhen
we have seen i®ection 4.@hat f — F; = 7n*(uy) for someu; a two-form onD. Note
also thatE ® J* with connectionA — V; descends to a bundig; on D with connection
Dj;. We define

sa 1 D(Q)— C
by
s4(0) =trhoI(Dj)exp</ /M) (4.6)
D

where the holonomy is computed over the boundary.ofVe need to check thaty is
independent of the choice dfandV;.

Lemma 4.8. The functions4 : D(Q) — C depends only on A not on the choice of
trivialisation J or connectiorVv,.

Proof. If we change to another trivialisatiol with connectiorV’, then there is line bundle
K on D with connectiorVg suchthat/ = 7~ 1(K)®J andVv; = n_l(VK)®V’J. Similarly
E;=E,® KandD; = D/, ® V. Hence

hol(D;) = hol(D’; ® V) = hol(D’;) hol(Vk) = hol(D/)) exp(—/ FK>
D

so that

salo)=tr hoI(D,)exp(/ ,u,) = trhol(D’,)exp(—/ FK> exp</ ,u,)
D D D
=trhol(D)) exp(/ ,u}) ,
D

and the function 4 is independent of andV,. O
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Next we have the following lemma.
Lemma4.9. The functions, transforms as a section af;.

Proof. Assume now that we have two maps: D — Q which agree witho on the
boundary. Trivialise the pull-back ey #o2 of L, over the whole of the two-sphere. Denote
this trivialisation byJ and its connection by ; and use subscript$o denote the restrictions
to the two hemisphereB1 and D,. Then

s(o1) =tr hoI(DJl)exp(/ Hh) = trhoI(DJZ)exp</ Mh)
D1 D1

=tr h0|(D12)eXp(/ A exp(/ MJ)) = 5(02) exp(/ MJ) ,
Dy 52 52

so thats is a section ofL¢. We use here the fact that ando, agree on the boundary &f
and thatD;, and D, agree on this common boundary. O

We now define the section trhel) : L(Q) — L, to be that given by the functiar.

This means we have defined all of the terms in the tensor pr¢@udt That the resultis a
function is a consequence of these definitions.

In the case that the bundle gerbe is not torsion it was sho2] that twistedk -theory
could be constructed from bundle gerbe modiles- Y whose structure group was reduced
to the group of unitaries on an infinite dimensional Hilbert sgd¢esomorphic to the fibres
of E) which differ from the identity by a compact operator. If we require a slightly stronger
result, that the bundle gerbe module have a reduction to the group of unitarféstaat
differ from the identity by something which is trace class then in the fornl@) the
quantity holDy) is a unitary differing from the identity by a trace class operator. Choose
now two bundle gerbe module connectiofis and A2 on E so we have hgD; ;) and
hol(D>, ;) which are unitaries differing from the identity by a trace class operator. Hence
we can define

s(0) = tr(hol(Dy,;) — hol(Dy,2)) exp (/D MJ) .

To see that this is well-defined and a sectiorLgfis a repeat of the calculation above. We
have

hol(D;. ;) = hol(D; ;) hol(Vk)
fori =1, 2 so that

hol(D1,7) — hol(Dz,s) = (hol(Dy, ;) — hol(Dz, ;)) hol(Vk),
giving

tr(hol(Dy,5) — hol(Dz,)) = tr(hol(Dy, ;1) — hol(D2, ;1)) hol(Vg),

and the argument goes through as above to define a seatimi(#1) — hol(A»)) of L,
overL(Q).
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We have made sense of all of the terms in the tensor prq@dutand by construction it
is a well-defined function oX'p (M).

5. Torsion bundle gerbes and C*-algebras

In this section we show how to relate torsion bundle gerbes to certain continuous trace
C*-algebras. In the course of this discussion we will explain the relation between Kapustin's
work [2,12].

We start with a principal bundle : ¥ — X with structure groug?U(n). All torsion
elements off3(X, Z) (Cech cohomology) arise as the Dixmier—Douady class of the lifting
bundle gerbe? — Y2 associated tar : Y — X for some choice of. Fix one torsion
class inH3(X, Z) and letP be the lifting bundle gerbe associated to this class by the central
extension

Zn — U(n) — PU®m).

We use the theory of locally compact groupdalti-algebras as developed f4,15,20] To

this end observe thatl?! is the groupoid of a relation ori namely we say; ~ y2 if y1

andy» lie in the same fibre of : ¥ — X. The set of equivalence classes under this relation
is X. In fact Y@ is a proper groupoid with unit spadebecause it is easy to check that it
satisfies the requiremefit4] that the mapro : Y14 — ¥ x ¥ which regard¢'!? as a subset

of the productr x Y is a homeomorphism onto a closed subset of the product space. Note
that the mapsr1 and, from Y[2l — y are the range and source maps respectively of this
groupoid which has, as its operations, the produgt y2)(y2, ¥3) = (y1, y3) and inverse

(y1, y2) 1 = (y2, y1). We identify the unit spacg with the diagonal(y, y)|y € Y}.

Now we remark thar!@ is locally compact and admits a Haar system. We recall con-
struction of the latter. A& — X admits local sections we can use the resulting local
trivialisation to choose foty1, y2) € Y2 a measure’? on the{(y1, y)ly € Y, 7(y) =
w(y1)} C Y@ In fact we may take foi”1, Haar measure oRU(n) as the measure on
{(y1, )|y € Y, n(y) = m(y1)} using the local trivialisation to identify these spaces. Note
that a sef{(y1, y)|y € Y, n(y) = n(y1)} may be identified wittPU(n) in many ways de-
pending on which open set of the cover we choose. However, we fix one choice for each
fibre throughout. This involves a choice from only finitely many options as our sface
is paracompact and the cover ¥fis locally finite. The set of measurés”t|y; € Y} is
easily seen to define a Haar systemrdfl. We remark that there is one technical condition
on a Haar system that may not be obvious. This is that it2!) denotes the continuous
functions of compact support of[2] then we have for allf € C.(Y!d) that the map
(y1, y2) = [ f(y1, y) dA21(y1, y) is continuous. After a moments thought one sees that the
construction of our measures via the local trivialisation guarantees this.

We may describe the groupoid structure Bin a number of ways. To make use of the
results of{15] we will use the language of principBbbT-groupoids. This means that we
will regard P as an extension of the groupoi@® in the sense of Definition 2.2 ¢13].

To this end we observe th#/T = Y!2 becauseP is aU(1) bundle overy?l. We may
define the range and source mapsdb ber, s : P, y,) — Y, wherer(z) = (y1, y1) and
5(z) = (y2, y2) for z € P(y,.y,). The sense in whick is an extension of 2! arises from the
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existence of a two-cocycle ar?! defined via the multiplication iP. Recall thatPy, ,,)
consists of those elemenisof U(n) such thaty;.p(u) = y2, wherep : U(n) — PU(n)

is the projection. We will regard our extension BU(n) as a set of pairgg, 1), where

g € PU(n) andr € Z,. This can be achieved globally by choosing a Borel cross-section
¢ of p. Note that asp has discrete fibres we may choaséo be locally constant. The
multiplication inU(n) is then written

(g1, c(g1))(g2, ¢(g2)) = (8182, c(g182)w (g1, 82)) (*)

wherew is a group two-cocycle oRU(n). It is now not hard to recognis as a principal
T-groupoid as described [d4].

The next stepis to identify the Dixmier—Douady clas®woégarded as a bundle gerbe. Itis
determined by choosing a good coy®&,} of X and transition functiongys : U,NUg — Y
forthe bundle¥ — X. Thenthe Dixmier—Douady class Bfis defined by the multiplication
on P. We can write this multiplication using the locally constant cross-seetimd(x) as

C(gozﬂ(m))c(gﬂy(m)) = C(gay)w(gotﬂ(m)s gﬂy(m))-

It follows from this thatw determines the Dixmier—Douady class Bf as a bundle
gerbe.

Now we need to describe tli& -algebra associated with this princifagroupoidP. Let
I.(P) denote the sections & — Y2l which are of compact support. These may be thought
of as functions:f : P — C satisfying f(z.r) = tf(z) for z € P. There is a multiplication
on I,.(P) given by

f*g(z1) = / fz122)8(z5 AR (25),

wherezs is the image of» underP — Y2, The involution is
[ = feh.

We denote byC*(P, Y2 )) the C* completion ofI.(P) following the notation and defi-
nitions of[14].

The conclusion of the main result §f4] is that the principall-groupoid C*-algebra
Cc*(P, Y12, %) is continuous trace with spectruih The technical assumption [#5] that
Y — X admits local sections is clearly satisfied so that we may apetyion Sof [15]. This
states that the Dixmier—Douady class@f(P, Y[2, 1), is the obstruction t@* (P, Y[2, 3)
being Morita equivalent to th€*-algebra of continuous functions g which vanish at
infinity Co(X).

We need to verify that the Dixmier—Douady class@f(P, Y14, 1) is the same as the
Dixmier—-Douady class oP as a bundle gerbe. This is notationally messy and to save
space we refer the reader to 128 pp.[th]. There, in the discussion centring around
equations (5.5) and (5.6), the Dixmier—Douady clasgt(P, Y[?, 1) is shown to arise
from w in essentially the same fashion as does the Dixmier—-Douady cldsa®f bundle
gerbe.

Using the known fadf21] that two continuous tragé*-algebras with the same spectrum
and Dixmier—Douady class are Morita equivalent we conclude that if we have an Azumaya
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algebra oveX as in[12] with the same Dixmier—Douady class Ashen it must be Morita
equivalent taC* (P, {2 3).

We can see that the bundle gerbe modBléor P is a module forC*(P, Y[?, 3). Let
f € I'-(P) and let be a smooth, compactly supported sectiooft is convenient at this
point to regard the bundle gerbe action Bras being given by a map(y1, y2) : Ey, —
E,,. With this choice we can integrate tieaction up a fibre. So i is a section of£ we
write

d(r1, ¥y2)EO1, ¥1) = d(y1, ¥2)E[(v2, Y1) (1, Y1) (01, ¥2)] = (31, ¥2)E(v2, ¥2)-

The reason for the conjugation action of the groupdd on Y is that this is how it acts
on the diagonal. Now we have to integrate this to get an actigh of . (P). We set, for
Z € Py, y,, 2 = (y1, y2) and define

fE(r(w)) == / FDP@Es(w)) da ™ (2).

We could go further but desist at this point for the reason that we do not know how to
make the above discussion work when the Dixmier—-Douady class is hon-torsion. Indeed
this was the whole reason for introducing bundle gerbe modules in the first place: they give
a realisation of twisted&© without the need to introduce operator algebras.
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